13.在直角坐標(biāo)系xOy中,已知定圓M:(x+1)2+y2=36,動圓N過點(diǎn)F(1,0)且與圓M相切,記動圓圓心N的軌跡為曲線C.
(1)求曲線C的方程;
(2)設(shè)A,P是曲線C上兩點(diǎn),點(diǎn)A關(guān)于x軸的對稱點(diǎn)為B(異于點(diǎn)P),若直線AP,BP分別交x軸于點(diǎn)S,T,證明:|OS|•|OT|為定值.

分析 (1)由題意,|NM|+|NF|=6>|FM|,由橢圓定義知,圓心N的軌跡為橢圓,且2a=6,c=1,即可求曲線C的方程;
(2)$|{OS}|•|{OT}|=|{{x_S}{x_T}}|=|{\frac{{{x_0}{y_1}-{x_1}{y_0}}}{{{y_1}-{y_0}}}•\frac{{{x_0}{y_1}+{x_1}{y_0}}}{{{y_1}+{y_0}}}}|=|{\frac{{{x_0}^2{y_1}^2-{x_1}^2{y_0}^2}}{{{y_1}^2-{y_0}^2}}}|$,即可證明結(jié)論.

解答 解:(1)因為點(diǎn)F(1,0)在M:(x+1)2+y2=36內(nèi),所以圓N內(nèi)切于圓M,則|NM|+|NF|=6>|FM|,
由橢圓定義知,圓心N的軌跡為橢圓,且2a=6,c=1,則a2=9,b2=8,
所以動圓圓心N的軌跡方程為$\frac{x^2}{9}+\frac{y^2}{8}=1$.
(2)設(shè)P(x0,y0),A(x1,y1),S(xS,0),T(xT,0),則B(x1,-y1),
由題意知x0≠±x1.則${k_{AP}}=\frac{{{y_1}-{y_0}}}{{{x_1}-{x_0}}}$,直線AP方程為y-y1=kAP(x-x1),
令y=0,得${x_S}=\frac{{{x_0}{y_1}-{x_1}{y_0}}}{{{y_1}-{y_0}}}$,同理${x_T}=\frac{{{x_0}({-{y_1}})-{x_1}{y_0}}}{{({-{y_1}})-{y_0}}}=\frac{{{x_0}{y_1}+{x_1}{y_0}}}{{{y_1}+{y_0}}}$,
于是$|{OS}|•|{OT}|=|{{x_S}{x_T}}|=|{\frac{{{x_0}{y_1}-{x_1}{y_0}}}{{{y_1}-{y_0}}}•\frac{{{x_0}{y_1}+{x_1}{y_0}}}{{{y_1}+{y_0}}}}|=|{\frac{{{x_0}^2{y_1}^2-{x_1}^2{y_0}^2}}{{{y_1}^2-{y_0}^2}}}|$,
又P(x0,y0)和A(x1,y1)在橢圓$\frac{x^2}{9}+\frac{y^2}{8}=1$上,
故${y_0}^2=8({1-\frac{{{x_0}^2}}{9}}),{y_1}^2=8({1-\frac{{{x_1}^2}}{9}})$,則${y_1}^2-{y_0}^2=\frac{8}{9}({{x_0}^2-{x_1}^2}),{x_0}^2{y_1}^2-{x_1}^2{y_0}^2=8{x_0}^2({1-\frac{{{x_1}^2}}{9}})-8{x_1}^2({1-\frac{{{x_0}^2}}{9}})=8({{x_0}^2-{x_1}^2})$.
所以$|{OS}|•|{OT}|=|{\frac{{{x_0}^2{y_1}^2-{x_1}^2{y_0}^2}}{{{y_1}^2-{y_0}^2}}}|=|{\frac{{8({{x_0}^2-{x_1}^2})}}{{\frac{8}{9}({{x_0}^2-{x_1}^2})}}}|=9$.

點(diǎn)評 本題考查橢圓的定義與方程,考查定值的證明,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,且過點(diǎn)A($\sqrt{3}$,$\frac{1}{2}$).
(1)求橢圓C的方程;
(2)已知直線l過點(diǎn)M(0,2),且與橢圓C交于P、Q(異于橢圓C的頂點(diǎn))兩點(diǎn)
(i)求△OPQ面積的最大值(O為坐標(biāo)點(diǎn));
(ii)在y軸上是否存在定點(diǎn)N,使得$\overrightarrow{NP}$•$\overrightarrow{NQ}$為定值?如果存在,求出定點(diǎn)與定值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.給出下列四個命題:
①“若x0為y=f(x)的極值點(diǎn),則f′(x0)=0”的逆命題為真命題;
②“平面向量$\overrightarrow a$,$\overrightarrow b$的夾角是鈍角”的充分不必要條件是$\overrightarrow a•\overrightarrow b<0$
③若命題$p:\frac{1}{x-1}>0$,則$?p:\frac{1}{x-1}≤0$;
④命題“?x∈R,使得x2+x+1<0”的否定是:“?x∈R均有x2+x+1≥0”.
其中不正確的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知Rt△ABC中,AB=3,AC=1,$∠A=\frac{π}{2}$,以B,C為焦點(diǎn)的雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)經(jīng)過點(diǎn)A,且與AB邊交于點(diǎn)D,若$\frac{{|{AD}|}}{{|{BD}|}}$的值為(  )
A.$\frac{7}{2}$B.3C.$\frac{9}{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實(shí)線畫出的是某空間幾何體的三視圖,則該幾何體的體積為(  )
A.$\frac{16}{3}(π+1)$B.$\frac{8}{3}(2π+1)$C.8(2π+1)D.16(π+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,設(shè)點(diǎn)A,F(xiàn)1,F(xiàn)2分別為橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$的左頂點(diǎn)和左,右焦點(diǎn),過點(diǎn)A作斜率為k的直線交橢圓于另一點(diǎn)B,連接BF2并延長交橢圓于點(diǎn)C.
(1)求點(diǎn)B的坐標(biāo)(用k表示);
(2)若F1C⊥AB,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.不等式-$\frac{x-1}{x+2}$>-|$\frac{x-1}{x+2}$|的解集為(  )
A.(-∞,-2)∪(1,+∞)B.(-∞,-2)C.(1,+∞)D.(-2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=|x-1|-2|x+1|的最大值a(a∈R).
(Ⅰ)求a的值;
(Ⅱ)若$\frac{1}{m}+\frac{1}{2n}=a$(m>0,n>0),試比較m+2n與2的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}y-x≤2\\ x+y≥4\\ 3x-y≤5\end{array}\right.$,若目標(biāo)函數(shù)z=y-mx取得最大值時有唯一的最優(yōu)解(1,3),則實(shí)數(shù)m的取值范圍是m>1.

查看答案和解析>>

同步練習(xí)冊答案