7.設(shè)函數(shù)f(x)=log2(ax-bx),且f(1)=1,f(2)=log212;
(1)求a,b的值;   
(2)判斷函數(shù)f(x)在定義域內(nèi)的單調(diào)性并證明.

分析 (1)根據(jù)f(1)=1,f(2)=log212,代入函數(shù)的解析式得到關(guān)于a,b的方程組,解出即可;
(2)根據(jù)函數(shù)單調(diào)性的對于證明即可.

解答 解:(1)由$\left\{{\begin{array}{l}{f(1)={{log}_2}(a-b)=1}\\{f(2)={{log}_2}({a^2}-{b^2})={{log}_2}12}\end{array}}\right.$,得:$\left\{{\begin{array}{l}{a-b=2}\\{{a^2}-{b^2}=12}\end{array}}\right.$,
解得a=4,b=2;…(4分)
(2)由(1)得$f(x)={log_2}({4^x}-{2^x})$…(5分)
由4x-2x>0,得2x-1>0,解得:x>0…(6分)
∴f(x)的定義域為(0,+∞)…(7分)
設(shè)x1>x2>0,
則${4^{x_1}}-{2^{x_1}}-({4^{x_2}}-{2^{x_2}})=({4^{x_1}}-{4^{x_1}})-({2^{x_1}}-{2^{x_2}})$
=$({2^{x_1}}-{2^{x_2}})({2^{x_1}}+{2^{x_2}}-1)$…(9分)
∵x1>x2>0,∴${2^{x_1}}>{2^{x_2}}>1$,
∴$({2^{x_1}}-{2^{x_2}})({2^{x_1}}+{2^{x_2}}-1)>0$,
∴${4^{x_1}}-{2^{x_1}}>{4^{x_2}}-{2^{x_2}}$…(10分)
又y=log2x在(0,+∞)上遞增;
∴${log_2}({4^{x_1}}-{2^{x_1}})>{log_2}({4^{x_2}}-{2^{x_2}})$,
即f(x1)>f(x2)…(11分)
∴f(x)在定義域(0,+∞)內(nèi)遞增…(12分)

點評 本題考查了對數(shù)函數(shù)的性質(zhì),考查根據(jù)定義證明函數(shù)的單調(diào)性問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知三次函數(shù)f(x)=$\frac{a}{3}{x^3}+\frac{2}{x^2}$+cd+d(a<b)的導(dǎo)函數(shù)為f′(x),導(dǎo)函數(shù)f′(x)的導(dǎo)函數(shù)為f″(x),如果對任意的x∈R,不等式f′(x)≥f″(x)恒成立,則$\frac{b^2}{{{a^2}+2{c^2}}}$的最大值為$\sqrt{6}$-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某校有1400名考生參加市模擬考試,現(xiàn)采取分層抽樣的方法從文、理考生中分別抽取20份和50份數(shù)學(xué)試卷,進(jìn)行成績分析,得到下面的成績頻數(shù)分布表:
分?jǐn)?shù)分組[0,30)[30,60)[60,90)[90,120)[120,150]
文科頻數(shù)24833
理科頻數(shù)3712208
(1)估計文科數(shù)學(xué)平均分及理科考生的及格人數(shù)(90分為及格分?jǐn)?shù)線);
(2)在試卷分析中,發(fā)現(xiàn)概念性失分非常嚴(yán)重,統(tǒng)計結(jié)果如下:
文理
失分
概念1530
其它520
問是否有90%的把握認(rèn)為概念失分與文、理考生的不同有關(guān)?(本題可以參考獨立性檢驗臨界值表:)
P(K2≥k)0.50.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)$f(x)=x+\frac{a}{x}$,且f(1)=2.
(1)求a的值;
(2)判斷函數(shù)f(x)的奇偶性;
(3)探求f(x)在區(qū)間[1,+∞)的單調(diào)性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>0,b>0})$的兩焦點與短軸的一個端點的連線構(gòu)成等邊三角形,直線$x+y+2\sqrt{2}-1=0$與以橢圓C的右焦點為圓心,以橢圓的長半軸長為半徑的圓相切.
(1)求橢圓C的方程;
(2)設(shè)點B,C,D是橢圓上不同于橢圓頂點的三點,點B與點D關(guān)于原點O對稱.設(shè)直線CD,CB,OB,OC的斜率分別為k1,k2,k3,k4,且k1k2=k3k4
(。┣髃1k2的值;
(ⅱ)求OB2+OC2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.總體編號為01,02,…19,20的20個個體組成.利用下面的隨機數(shù)表選取5個個體,選取方法是從隨機數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為01.
  7816   6572   0802   6314   0214   4319   9714   0198
  3204   9234   4936   8200   3623   4869   6938   7181

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}滿足a1+a2+a3+…+an=n-an.其中n∈N*
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{(2-n)(an-1)}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)集合A={x|x∈Z,-10≤x≤-1},B={x|x∈Z,x2≤25},則A∪B中的元素個數(shù)是( 。
A.15B.16C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知{an}是正數(shù)組成的數(shù)列,a1=1,且點($\sqrt{{a}_{n}}$,an+1)(n∈N*)在函數(shù)y=x2+1的圖象上.
(1)求數(shù)列{an}的通項公式;
(2)令{bn}滿足bn=an•xn(x≠0且x≠1),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

同步練習(xí)冊答案