【題目】已知⊙O:x2+y2=2,⊙M:(x+2)2+(y+2)2=2,點(diǎn)P的坐標(biāo)為(1,1).
(1)過點(diǎn)O作⊙M的切線,求該切線的方程;
(2)若點(diǎn)Q是⊙O上一點(diǎn),過Q作⊙M的切線,切點(diǎn)分別為E,F(xiàn),且∠EQF= ,求Q點(diǎn)的坐標(biāo);
(3)過點(diǎn)P作兩條相異直線分別與⊙O相交于A,B,且直線PA與直線PB的傾斜角互補(bǔ),試判斷直線OP與AB是否平行?請(qǐng)說明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù),
(1)當(dāng)時(shí),求不等式的解集;
(2)若不等式的解集為空集,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)y=sin(x+ )圖象上的所有點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼? 倍,所得函數(shù)為f(x),則函數(shù)f(x)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知梯形ABCD,AB∥CD,且AB=AD=2,CD=3.
(1)用向量 、 表示向量 ;
(2)若AD⊥AB,求向量 、 夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖在三棱錐S﹣ABC中,△ABC是邊長(zhǎng)為2的正三角形,平面SAC⊥平面ABC,SA=SC= ,M為AB的中點(diǎn).
(I)證明:AC⊥SB;
(Ⅱ)求點(diǎn)B到平面SCM的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人約定在下午 4:30:5:00 間在某地相見,且他們?cè)?4:30:5:00 之間 到達(dá)的時(shí)刻是等可能的,約好當(dāng)其中一人先到后一定要等另一人 20 分鐘,若另一人仍不到則可以離去,則這兩人能相見的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 (其中為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系并取相同的單位長(zhǎng)度,曲線的極坐標(biāo)方程為.
(1)把曲線的方程化為普通方程, 的方程化為直角坐標(biāo)方程;
(2)若曲線, 相交于兩點(diǎn), 的中點(diǎn)為,過點(diǎn)做曲線的垂線交曲線于兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
如圖,已知四棱錐,底面為菱形,,
, 平面, 分別是的中點(diǎn)。
(1)證明: ;
(2)若為上的動(dòng)點(diǎn),與平面所成最大角
的正切值為,求二面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)曲線在點(diǎn)處的切線與直線垂直時(shí),求的值;
(2)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com