設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,離心率為 , 在軸負(fù)半軸上有一點(diǎn),且

(1)若過(guò)三點(diǎn)的圓 恰好與直線相切,求橢圓C的方程;

(2)在(1)的條件下,過(guò)右焦點(diǎn)作斜率為的直線與橢圓C交于兩點(diǎn),在軸上是否存在點(diǎn),使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍;如果不存在,說(shuō)明理由.

 

【答案】

(1);(2)存在滿足題意的點(diǎn)的取值范圍是。

【解析】

試題分析:(1)由題意,得,所以 

  由于,所以的中點(diǎn),

所以

所以的外接圓圓心為,半徑  3分

又過(guò)三點(diǎn)的圓與直線相切,

所以解得

所求橢圓方程為   6分

(2)有(1)知,設(shè)的方程為:

將直線方程與橢圓方程聯(lián)立

,整理得

設(shè)交點(diǎn)為,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013051813151475322169/SYS201305181315553470387237_DA.files/image027.png">

  8分

若存在點(diǎn),使得以為鄰邊的平行四邊形是菱形,

由于菱形對(duì)角線垂直,所以

 

的方向向量是,故,則

,即

由已知條件知  11分

,故存在滿足題意的點(diǎn)的取值范圍 是  13分

考點(diǎn):本題主要考查橢圓標(biāo)準(zhǔn)方程,直線方程,直線與橢圓的位置關(guān)系,存在性問(wèn)題研究,平面向量的坐標(biāo)運(yùn)算。

點(diǎn)評(píng):難題,曲線關(guān)系問(wèn)題,往往通過(guò)聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理。本題求橢圓標(biāo)準(zhǔn)方程時(shí),主要運(yùn)用了橢圓的幾何性質(zhì)。對(duì)于存在性問(wèn)題,往往先假設(shè)存在,利用已知條件加以探究,以明確計(jì)算的合理性。本題(III)通過(guò)確定m的表達(dá)式,利用函數(shù)思想,通過(guò)求函數(shù)的最值,確定得到其范圍。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在坐標(biāo)原點(diǎn)、焦點(diǎn)在x軸上橢圓的離心率e=
3
3
,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線y=x+2相切.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的左,右焦點(diǎn)分別是F1和F2,直線l1過(guò)F2且與x軸垂直,動(dòng)直線l2與y軸垂直,l2交l1于點(diǎn)P,求線段PF1的垂直平分線與l2的交點(diǎn)M的軌跡方程,并指明曲線類型.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年四川卷理)設(shè)橢圓的左、右焦點(diǎn)分別是、,離心率,右準(zhǔn)線上的兩動(dòng)點(diǎn)、,且

(Ⅰ)若,求、的值;

(Ⅱ)當(dāng)最小時(shí),求證共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分) 已知橢圓的離心率,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切。(I)求a與b;(II)設(shè)橢圓的左,右焦點(diǎn)分別是F1和F2,直線且與x軸垂直,動(dòng)直線軸垂直,于點(diǎn)P,求線段PF1的垂直平分線與的交點(diǎn)M的軌跡方程,并指明曲線類型。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:四川省高考真題 題型:解答題

設(shè)橢圓的左、右焦點(diǎn)分別是F1、F2,離心率,右準(zhǔn)線l上的兩動(dòng)點(diǎn)M、N,且,
(Ⅰ)若,求a、b的值;
(Ⅱ)當(dāng)最小時(shí),求證共線。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省黃山市休寧中學(xué)高三(上)數(shù)學(xué)綜合練習(xí)試卷1(文科)(解析版) 題型:解答題

已知中心在坐標(biāo)原點(diǎn)、焦點(diǎn)在x軸上橢圓的離心率,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線y=x+2相切.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的左,右焦點(diǎn)分別是F1和F2,直線l1過(guò)F2且與x軸垂直,動(dòng)直線l2與y軸垂直,l2交l1于點(diǎn)P,求線段PF1的垂直平分線與l2的交點(diǎn)M的軌跡方程,并指明曲線類型.

查看答案和解析>>

同步練習(xí)冊(cè)答案