【題目】如圖,在棱柱中,,,,分別是,的中點(diǎn).

求證:平面平面;

求證:平面;

求三棱錐的體積.

【答案】(1)證明見解析;(2)證明見解析;(3)

【解析】

試題分析:(1先利用線面垂直得到線線垂直,再利用線面垂直的判定定理和面面垂直的判定定理進(jìn)行證明;(2)利用三角形的中位線得到線線平行和線段,得到平行四邊形,再由平行四邊形的性質(zhì)得到線線平行,再由線面平行的判定定理進(jìn)行證明;(3)利用三棱錐的體積公式進(jìn)行求解.

試題解析:()證明:在三棱柱中,

底面,所以.

又因?yàn)?/span>,

所以平面,

平面,

所以平面平面

)證明:取的中點(diǎn),連接,.

因?yàn)?/span>,分別是,,的中點(diǎn),

所以,且.

因?yàn)?/span>,且,所以,且

所以四邊形為平行四邊形,所以.

又因?yàn)?/span>平面平面,所以平面.

)因?yàn)?/span>,所以.

所以三棱錐的體積

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),判斷的單調(diào)性;

(2)若上為單調(diào)增函數(shù),求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的離心率為,頂點(diǎn)為,且

(1)求橢圓的方程;

(2)是橢圓上除頂點(diǎn)外的任意點(diǎn),直線軸于點(diǎn),直線于點(diǎn).設(shè)的斜率為, 的斜率為,試問是否為定值?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)t滿足f(0)=f(2)=2,f(1)=1.
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈[﹣1,2]時(shí),求y=f(x)的值域;
(3)設(shè)h(x)=f(x)﹣mx在[1,3]上是單調(diào)函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖橢圓的上下頂點(diǎn)為AB,直線 ,點(diǎn)P是橢圓上異于點(diǎn)A、B的任意一點(diǎn),連結(jié)AP并延長交直線于點(diǎn)N,連結(jié)BP并延長交直線于點(diǎn)M,設(shè)AP、BP所在直線的斜率分別為,若橢圓的離心率為,且過點(diǎn),(1)求的值,并求最小值;(2)隨著點(diǎn)P的變化,以MN為直徑的圓是否恒過定點(diǎn),若過定點(diǎn),求出該定點(diǎn)坐標(biāo);若不過定點(diǎn),請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求實(shí)數(shù)a的取值范圍;
(3)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= +lg(3x+1)的定義域是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn+n=2annN*).

1)證明:數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;

(2)若bn=2n+1an+2n+1,數(shù)列{bn}的前n項(xiàng)和為Tn.求滿足不等式2010n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(1)設(shè),求的最小值;

(2)若曲線僅有一個(gè)交點(diǎn),證明:曲線在點(diǎn)處有相同的切線,且.

查看答案和解析>>

同步練習(xí)冊答案