11.某高級中學共有900名學生,現(xiàn)用分層抽樣的方法從該校學 生中抽取1個容量為45的樣本,其中高一年級抽20人,高三年級抽10人,則該校高二年級學生人數(shù)為300.

分析 用分層抽樣的方法抽取一個容量為45的樣本,根據(jù)高一年級抽20人,高三年級抽10人,得到高二年級要抽取的人數(shù),根據(jù)該高級中學共有900名學生,算出高二年級學生人數(shù).

解答 解:∵用分層抽樣的方法從某校學生中抽取一個容量為45的樣本,
其中高一年級抽20人,高三年級抽10人,
∴高二年級要抽取45-20-10=15,
∵高級中學共有900名學生,
∴每個個體被抽到的概率是$\frac{45}{900}$=$\frac{1}{20}$
∴該校高二年級學生人數(shù)為$\frac{15}{\frac{1}{20}}$=300,
故答案為:300.

點評 本題考查分層抽樣,抽樣過程中每個個體被抽到的可能性相同,這是解決抽樣問題的依據(jù),樣本容量、總體個數(shù)、每個個體被抽到的概率,這三者可以做到知二求一.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,已知菱形ABCD的邊長為6,∠BAD=60°,AC∩BD=0,將菱形ABCD沿對角線AC折起,得到三棱錐B-ACD,點M是棱BC的中點.
(1)求證:OM∥平面ABD;
(2)求證:平面ABC⊥平面MDO.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知等差數(shù)列{an}的各項均為正數(shù),其公差為2,a2a4=4a3+1.
(1)求{an}的通項公式;
(2)求a1+a3+a9+…+${a}_{{3}^{n}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)g(x)=lnx,f(x)=ag(x)+$\frac{a+1}{x}$-2(a+1),(a∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)將函數(shù)f(x)解析式中的g(x)改為g(x)的反函數(shù)得函數(shù)h(x),若x>0時,h(x)≥0.求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.設橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1、F2,上頂點為A,過A與AF2垂直的直線交x軸負半軸于Q點,且F1恰好是線段QF2的中點.
(1)若過A、Q、F2三點的圓恰好與直線3x-4y-7=0相切,求橢圓C的方程;
(2)在(1)的條件下,B是橢圓C的左頂點,過點R($\frac{3}{2}$,0)作與x軸不重合的直線l交橢圓C于E、F兩點,直線BE、BF分別交直線x=$\frac{8}{3}$于M、N兩點,若直線MR、NR的斜率分別為k1,k2,試問:k1k2是否為定值?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.設|θ|<$\frac{π}{2}$,n為正整數(shù),數(shù)列{an}的通項公式an=sin$\frac{nπ}{2}$tannθ,其前n項和為Sn
(1)求證:當n為偶函數(shù)時,an=0;當n為奇函數(shù)時,an=(-1)${\;}^{\frac{n-1}{2}}$tannθ;
(2)求證:對任何正整數(shù)n,S2n=$\frac{1}{2}$sin2θ•[1+(-1)n+1tan2nθ].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.在△ABC中,角A,B,C的對邊分別為a,b,c,已知(2a+2c-b)cosC=(a+c)cosB+bcosA,若c=3,則a+b的最大值為6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD為矩形,E為PC的中點,且$PD=AD=\frac{1}{2}AB=4$.
(1)過點A作一條射線AG,使得AG∥BD,求證:平面PAG∥平面BDE;
(2)若點F為線段PC上一點,且DF⊥平面PBC,求四棱錐F-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知$tanx=\frac{1}{2}$,則sin2x+3sinxcosx-1=$\frac{2}{5}$.

查看答案和解析>>

同步練習冊答案