【題目】設(shè)m,n是兩條不同直線,,是兩個(gè)不同的平面,下列命題正確的是
A.,且,則
B.,,,,則
C.,,,則
D.,且,則
【答案】D
【解析】
對(duì)每一個(gè)命題逐一判斷得解.
對(duì)于A,若m∥α,n∥β且α∥β,說(shuō)明m、n是分別在平行平面內(nèi)的直線,它們的位置關(guān)
系應(yīng)該是平行或異面或相交,故A不正確;
對(duì)于B,若“mα,nα,m∥β,n∥β”,則“α∥β”也可能α∩β=l,所以B不成立.
對(duì)于C,根據(jù)面面垂直的性質(zhì),可知m⊥α,nβ,m⊥n,∴n∥α,∴α∥β也可能α∩β=l,
也可能α⊥β,故C不正確;
對(duì)于D,由m⊥α,n⊥β且α⊥β,則m與n一定不平行,否則有α∥β,與已知α⊥β矛盾,
通過(guò)平移使得m與n相交,且設(shè)m與n確定的平面為γ,則γ與α和β的交線所成的角即
為α與β所成的角,因?yàn)?/span>α⊥β,所以m與n所成的角為90°,故命題D正確.
故答案為D
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知是正三角形,EA,CD都垂直于平面ABC,且,,F是BE的中點(diǎn),
求證:(1)平面ABC;
(2)平面EDB.
(3)求幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了更好地規(guī)劃進(jìn)貨的數(shù)量,保證蔬菜的新鮮程度,某蔬菜商店從某一年的銷售數(shù)據(jù)中,隨機(jī)抽取了8組數(shù)據(jù)作為研究對(duì)象,如右下表所示((噸)為買進(jìn)蔬菜的質(zhì)量,(天)為銷售天數(shù)):
(Ⅰ) 根據(jù)右表提供的數(shù)據(jù)在網(wǎng)格中繪制散點(diǎn)圖,并判斷與是否線性相關(guān),若線性相關(guān),用最小二乘法求出關(guān)于的線性回歸方程
2 | 3 | 4 | 5 | 6 | 7 | 9 | 12 | |
1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(Ⅱ)根據(jù)(Ⅰ)中的計(jì)算結(jié)果,若該蔬菜商店準(zhǔn)備一次性買進(jìn)蔬菜25噸,則預(yù)計(jì)需要銷售多少天.
參考公式:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為(其中t為參數(shù)).現(xiàn)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=6cosθ.
(Ⅰ)寫出直線l普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)過(guò)點(diǎn)M(-1,0)且與直線l平行的直線l1交C于A,B兩點(diǎn),求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù)有下述四個(gè)結(jié)論:①若,則;②的圖象關(guān)于點(diǎn)對(duì)稱;③函數(shù)在上單調(diào)遞增;④的圖象向右平移個(gè)單位長(zhǎng)度后所得圖象關(guān)于軸對(duì)稱.其中所有正確結(jié)論的編號(hào)是( )
A.①②④B.①②C.③④D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面是邊長(zhǎng)為的正方形ABCD,AC與BD的交點(diǎn)為O,平面ABCD且,E是邊BC的中點(diǎn),動(dòng)點(diǎn)P在四棱錐表面上運(yùn)動(dòng),并且總保持,則動(dòng)點(diǎn)P的軌跡的周長(zhǎng)為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,已知曲線,將曲線上的點(diǎn)向左平移一個(gè)單位,然后縱坐標(biāo)不變,橫坐標(biāo)軸伸長(zhǎng)到原來(lái)的2倍,得到曲線,又已知直線(是參數(shù)),且直線與曲線交于兩點(diǎn).
(I)求曲線的直角坐標(biāo)方程,并說(shuō)明它是什么曲線;
(II)設(shè)定點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】判斷下列命題的真假:
(1)是有理數(shù);(2);
(3)奇數(shù)的平方仍是奇數(shù);(4)兩個(gè)集合的交集還是一個(gè)集合;
(5)每一個(gè)素?cái)?shù)都是奇數(shù);(6)方程有實(shí)數(shù)根;
(7);(8)如果,那么.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班共有學(xué)生45人,其中女生18人,現(xiàn)用分層抽樣的方法,從男、女學(xué)生中各抽取若干學(xué)生進(jìn)行演講比賽,有關(guān)數(shù)據(jù)見(jiàn)下表(單位:人)
性別 | 學(xué)生人數(shù) | 抽取人數(shù) |
女生 | 18 | |
男生 | 3 |
(1)求和;
(2)若從抽取的學(xué)生中再選2人做專題演講,求這2人都是男生的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com