分析 (1)推導(dǎo)出DP⊥AC,從而B(niǎo)D⊥AC,進(jìn)而AC⊥平面PBD,由此能證明AC⊥DE.
(2)連接OE,分別以O(shè)A,OB,OE所在直線為x軸,y軸,z軸,建立空間直角坐標(biāo)系,利用向量法能求出EC與平面PAB所成角θ的正弦值.
解答 (1)證明:因?yàn)镈P⊥平面ABCD,所以DP⊥AC,
因?yàn)樗倪呅蜛BCD為菱形,所以BD⊥AC,
又BD∩PD=D,∴AC⊥平面PBD,
因?yàn)镈E?平面PBD,∴AC⊥DE.
(2)解:連接OE,在△PBD中,EO∥PD,
所以EO⊥平面ABCD,分別以O(shè)A,OB,OE所在直線為x軸,y軸,z軸,
建立如圖所示的空間直角坐標(biāo)系,
設(shè)PD=t,則A(1,0,0),B(0,$\sqrt{3}$,0),C(-1,0,0),
E(0,0,$\frac{t}{2}$),P(0,-$\sqrt{3}$,t),
設(shè)平面PAB的一個(gè)法向量為$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{-x+\sqrt{3}y=0}\\{-x-\sqrt{3}y+tz=0}\end{array}\right.$,令y=1,得$\overrightarrow{n}$=($\sqrt{3}$,1,$\frac{2\sqrt{3}}{t}$),
平面PBD的法向量$\overrightarrow{m}$=(1,0,0),
因?yàn)槎娼茿-PB-D的余弦值為$\frac{\sqrt{15}}{5}$,
所以|cos<$\overrightarrow{m}$,$\overrightarrow{n}$>|=$\frac{\sqrt{3}}{\sqrt{4+\frac{12}{{t}^{2}}}}$=$\frac{\sqrt{15}}{5}$,
所以t=2$\sqrt{3}$或t=-2($\sqrt{3}$舍)
P(0,-$\sqrt{3}$,2$\sqrt{3}$),E(0,0,1),$\overrightarrow{n}$=($\sqrt{3}$,1,1),
$\overrightarrow{EC}$=(-1,0,-$\sqrt{3}$)
∴sinθ=|$\frac{-\sqrt{3}-\sqrt{3}}{2\sqrt{5}}$|=$\frac{\sqrt{15}}{5}$,
∴EC與平面PAB所成角θ的正弦值為$\frac{\sqrt{15}}{5}$.
點(diǎn)評(píng) 本題考查線線垂直的證明,考查線面角的正弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com