5.對正整數(shù)n定義一種新運(yùn)算“*”,它滿足①1*1=1,②(n+1)*1=2(n*1),則2*1=2;n*1=2n-1

分析 根據(jù)定義中的運(yùn)算法則,對(n+1)*1=2(n*1)反復(fù)利用,即逐步改變“n”的值,即可得出答案.

解答 解:∵1*1=1,(n+1)*1=2(n*1),
∴2*1=(1+1)*1=2(1*1)=2,
∴n*1=(n-1+1)*1=2•(n-1)*1=…=2n-1•(1*1)=2n-1
故答案為:2;2n-1

點(diǎn)評 本題考查學(xué)生靈活運(yùn)用題目所給條件進(jìn)行計(jì)算的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖,是一個幾何體的三視圖,其中正視圖是等腰直角三角形,側(cè)視圖與俯視圖均為邊長為1的正方形,則該幾何體外接球的表面積為3π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知正方體ABCD-A1B1C1D1的各個頂點(diǎn)都在球O的球面上,若球O的表面積為16π,過點(diǎn)A,B,C,D作球O的截面,則該截面的面積為$\frac{8π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖所示,小華單位的圓柱形注水罐的底面半徑為2m、高為3m,若每小時灌入該注水罐的水的體積為3m3,則經(jīng)過多少小時該注水罐灌滿?(注意:π取近似值3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.(-x)2$\sqrt{-\frac{1}{x}}$等于(  )
A.$\sqrt{x}$B.-x$\sqrt{-x}$C.x$\sqrt{x}$D.x$\sqrt{-x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知$\overrightarrow{a}$⊥$\overrightarrow$,并且$\overrightarrow{a}$=(3,x),$\overrightarrow$=(7,12),則x=( 。
A.-$\frac{7}{4}$B.$\frac{7}{4}$C.-$\frac{7}{3}$D.$\frac{7}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.從某大學(xué)一年級女生中,選取身高分別是150cm、155cm、160cm、165cm、170cm的學(xué)生各一名,其身高和體重?cái)?shù)據(jù)如表所示:
身高/cm(x)150155160165170
體重/kg(y)4346495156
(1)求y關(guān)于x的線性回歸方程;
(2)利用(1)中的回歸方程,計(jì)算身高為168cm時,體重的估計(jì)值$\stackrel{∧}{y}$為多少?
    參考公式:線性回歸方程 $\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如表:
廣告費(fèi)用x(萬元)3456
銷售額y(萬元)25304045
根據(jù)上表可得回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}$=7,則$\stackrel{∧}{a}$=3.5,據(jù)此模型預(yù)報(bào)廣告費(fèi)為7萬元時銷售額為52.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知{an}是遞增的等比數(shù)列,a2,a4方程x2-40x+256=0的根.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{n+2}{{a}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和Sn,并證明:$\frac{3}{4}$≤Sn<2.

查看答案和解析>>

同步練習(xí)冊答案