設(shè)等差數(shù)列{an}的公差為d,若數(shù)列{a1an}為遞增數(shù)列,則( 。
A、d<0
B、d>0
C、a1d<0
D、a1d>0
考點(diǎn):等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:直接利用數(shù)列{a1an}的后一項(xiàng)與前一項(xiàng)的差大于0得答案.
解答: 解:∵數(shù)列{an}是公差為d的等差數(shù)列,
且數(shù)列{a1an}為遞增數(shù)列,
∴a1an-a1an-1=a1(an-an-1)=a1d>0.
故選:D.
點(diǎn)評(píng):本題考查了等差數(shù)列的定義,考查了等差數(shù)列的性質(zhì),是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex(ax+b)+x2+2x,曲線y=f(x)經(jīng)過點(diǎn)P(0,1),且在點(diǎn)P處的切線為l:y=4x+1.
(I)求a,b的值;
(Ⅱ)若存在實(shí)數(shù)k,使得x∈[-2,-1]時(shí)f(x)≥x2+2(k+1)x+k恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于任意兩個(gè)正整數(shù)m,n,定義某種運(yùn)算“※”如下:當(dāng)m,n都為正偶數(shù)或正奇數(shù)時(shí),m※n=m+n;當(dāng)m,n中一個(gè)為正偶數(shù),另一個(gè)為正奇數(shù)時(shí),m※n=mn.則在此定義下,集合M={(a,b)|a※b=16}中的元素個(gè)數(shù)是( 。
A、18B、17C、16D、15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個(gè)內(nèi)角A、B、C所對(duì)的邊分別為a,b,c,且滿足bsinBsinC+ccos2B=
7
3
b,
(1)求
c-b
c+b
的值;
(2)若tanA=
5
3
11
,求角C的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,A={x|x≤0},B={x|x≥2},則集合∁U(A∪B)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α終邊經(jīng)過點(diǎn)P(12,-5),則sinα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z滿足(z+1)(4-3i)=3+4i,則z的虛部為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在實(shí)數(shù)集R上的函數(shù)y=f(x)的圖象是連續(xù)不斷的,若對(duì)任意的實(shí)數(shù),存在常數(shù)使得f(t+x)=-tf(x)恒成立,則稱f(x)是一個(gè)“關(guān)于t函數(shù)”,下列“關(guān)于t函數(shù)”的結(jié)論正確的是(  )
A、f(x)=2不是“關(guān)于t函數(shù)”
B、f(x)=x是一個(gè)“關(guān)于t函數(shù)”
C、“關(guān)于
1
2
函數(shù)”至少有一個(gè)零點(diǎn)
D、f(x)=sinπx不是一個(gè)“關(guān)于t函數(shù)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x4+x3-ax2+a2只有唯一的極值點(diǎn) 則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案