【題目】已知數(shù)列{an}中,a1=1且an+1=an+2n+1,設(shè)數(shù)列{bn}滿足bn=an﹣1,對(duì)任意正整數(shù)n不等式 均成立,則實(shí)數(shù)m的取值范圍為

【答案】[ ,+∞)
【解析】解:由an+1=an+2n+1,則an+1﹣an=2n+1, 則a2﹣a1=3,
a3﹣a2=5,
a4﹣a3=7,

an﹣an1=2n﹣1,
以上各式相加:an﹣a1=3+5+7+…+2n﹣1= =n2﹣1,
an=n2﹣1+a1=n2 ,
當(dāng)n=1時(shí)成立,
∴an=n2 ,
bn=an﹣1=n2﹣1=(n+1)(n﹣1),
當(dāng)n≥2時(shí),則 = = ),
+ +…+ = (1﹣ )+ )+ )+…+ )+ ),
= (1+ )<
,則 ,
實(shí)數(shù)m的取值范圍[ ,+∞),
所以答案是:[ ,+∞).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的三邊長(zhǎng)a,b,c依次成等差數(shù)列,a2+b2+c2=21,則b的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 ,sinα=7m﹣3,sinβ=1﹣m,若α+β<2π,則實(shí)數(shù)m的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)B是以AC為直徑的圓周上的一點(diǎn),PA=AB=BC,AC=4,PA⊥平面ABC,點(diǎn)E為PB中點(diǎn).

(Ⅰ)求證:平面AEC⊥平面PBC;
(Ⅱ)求直線AE與平面PAC所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的首項(xiàng)為1,Sn為數(shù)列{an}的前n項(xiàng)和,Sn+1=qSn+1,其中q>0,n∈N*
(1)若2a2 , a3 , a2+2成等差數(shù)列,求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn= ,且b2= ,證明:b1+b2++bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,△ACD是邊長(zhǎng)為1的等邊三角形,△ABC是等腰直角三角形,∠ACB=90°,BD交AC于點(diǎn)E.
(1)求BD2的值;
(2)求線段AE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上,且拋物線上有一點(diǎn)到焦點(diǎn)的距離為5.

(1)求該拋物線的方程;

(2)已知拋物線上一點(diǎn),過點(diǎn)作拋物線的兩條弦,且,判斷直線是否過定點(diǎn)?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解某學(xué)校高二年級(jí)學(xué)生的物理成績(jī),從中抽取n名學(xué)生的物理成績(jī)(百分制)作為樣本,按成績(jī)分成 5組:[50,60),[60,70),[70,80),[80,90),[90,100],頻率分布直方圖如圖所示.成績(jī)落在[70,80)中的人數(shù)為20.

男生

女生

合計(jì)

優(yōu)秀

不優(yōu)秀

合計(jì)

(Ⅰ)求a和n的值;

(Ⅱ)根據(jù)樣本估計(jì)總體的思想,估計(jì)該校高二學(xué)生物理成績(jī)的平均數(shù)和中位數(shù)m;

(Ⅲ)成績(jī)?cè)?0分以上(含80分)為優(yōu)秀,樣本中成績(jī)落在[50,80)中的男、女生人數(shù)比為1:2,成績(jī)落在[80,100]中的男、女生人數(shù)比為3:2,完成2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為物理成績(jī)優(yōu)秀與性別有關(guān).

參考公式和數(shù)據(jù):K2=

P(K2≥k)

0.50

0.05

0.025

0.005

k

0.455

3.841

5.024

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)所示,已知四邊形是由直角△和直角梯形拼接而成的,其中

.且點(diǎn)為線段的中點(diǎn), , 現(xiàn)將△沿進(jìn)行翻折,使得二面角

的大小為,得到圖形如圖(2)所示,連接,點(diǎn)分別在線段上.

(1)證明:

(2)若三棱錐的體積為四棱錐體積的,求點(diǎn)到平面的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案