【題目】已知拋物線的頂點在原點,焦點在
軸上,且拋物線上有一點
到焦點的距離為5.
(1)求該拋物線的方程;
(2)已知拋物線上一點,過點
作拋物線的兩條弦
和
,且
,判斷直線
是否過定點?并說明理由.
【答案】(1).(2)
【解析】試題分析:(1)求出拋物線的焦點坐標,結(jié)合題意列關(guān)于p的等式求p,則拋物線方程可求;
(2)由(1)求出M的坐標,設(shè)出直線DE的方程 ,聯(lián)立直線方程和拋物線方程,化為關(guān)于y的一元二次方程后D,E兩點縱坐標的和與積,利用
得到t與m的關(guān)系,進一步得到DE方程,由直線系方程可得直線DE所過定點.
試題解析:
(1)由題意設(shè)拋物線方程為,
其準線方程為,
∵到焦點的距離等于
到其準線的距離,
∴,∴
.
∴拋物線的方程為
.
(2)由(1)可得點,可得直線
的斜率不為0,
設(shè)直線的方程為:
,
聯(lián)立,得
,
則①.
設(shè),則
.
∵
即,得:
,
∴,即
或
,
代人①式檢驗均滿足,
∴直線的方程為:
或
.
∴直線過定點(定點
不滿足題意,故舍去).
點睛:拋物線的定義是解決拋物線問題的基礎(chǔ),它能將兩種距離(拋物線上的點到焦點的距離、拋物線上的點到準線的距離)進行等量轉(zhuǎn)化.如果問題中涉及拋物線的焦點和準線,又能與距離聯(lián)系起來,那么用拋物線定義就能解決問題.因此,涉及拋物線的焦半徑、焦點弦問題,可以優(yōu)先考慮利用拋物線的定義轉(zhuǎn)化為點到準線的距離,這樣就可以使問題簡單化.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且a1+a5=17.
(1)若{an}還同時滿足: ①{an}為等比數(shù)列;②a2a4=16;③對任意的正整數(shù)n,a2n<a2n+2 , 試求數(shù)列{an}的通項公式.
(2)若{an}為等差數(shù)列,且S8=56. ①求該等差數(shù)列的公差d;②設(shè)數(shù)列{bn}滿足bn=3nan , 則當(dāng)n為何值時,bn最大?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中, 已知定圓
,動圓
過點
且與圓
相切,記動圓圓心
的軌跡為曲線
.
(1)求曲線的方程;
(2)設(shè)是曲線
上兩點,點
關(guān)于
軸的對稱點為
(異于點
),若直線
分別交
軸于點
,證明:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,a1=1且an+1=an+2n+1,設(shè)數(shù)列{bn}滿足bn=an﹣1,對任意正整數(shù)n不等式 均成立,則實數(shù)m的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個焦點為
,其左頂點
在圓
上.
(Ⅰ)求橢圓的方程;
(Ⅱ)直線交橢圓
于
兩點,設(shè)點
關(guān)于
軸的對稱點為
(點
與點
不重合),且直線
與
軸的交于點
,試問
的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AC⊥BC,點D是AB的中點.求證:
(1)AC⊥BC1;
(2)AC1∥平面B1CD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,△PAB為正三角形,四邊形ABCD為矩形,平面PAB⊥平面ABCD,AB=2AD,M,N分別為PB,PC中點.
(Ⅰ)求證:MN∥平面PAD;
(Ⅱ)求二面角B﹣AM﹣C的大;
(Ⅲ)在BC上是否存在點E,使得EN⊥平面AMN?若存在,求 的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,拋物線C:x2=2py(p>0),其焦點為F,C上的一點M(4,m)滿足|MF|=4.
(1)求拋物線C的標準方程;
(2)過點E(﹣1,0)作不經(jīng)過原點的兩條直線EA,EB分別與拋物線C和圓F:x2+(y﹣2)2=4相切于點A,B,試判斷直線AB是否經(jīng)過焦點F.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com