分析 由題意可知:設(shè)A($\frac{c}{2}$,y),代入橢圓方程,求得y,由等比三角形的性質(zhì)可知:丨y丨=$\sqrt{3}$•$\frac{c}{2}$,由離心率的公式及離心率的取值范圍,即可求得橢圓離心率.
解答 解:橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$焦點(diǎn)在x軸上,設(shè)A($\frac{c}{2}$,y),
將x=$\frac{c}{2}$代入橢圓方程$\frac{{c}^{2}}{4{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1,解得y=±$\frac{b\sqrt{4{a}^{2}-{c}^{2}}}{2a}$.
∵△OFP為等邊三角形,則tan∠AOF=$\frac{y}{\frac{c}{2}}$
∴$\frac{b\sqrt{4{a}^{2}-{c}^{2}}}{2a}$=$\sqrt{3}$×$\frac{c}{2}$.
化為:e4-8e2+4=0,0<e<1.
解得:e2=4-2$\sqrt{3}$,
由0<e<1,解得:e=$\sqrt{3}$-1.
故答案為:$\sqrt{3}$-1.
點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程及簡單幾何性質(zhì),考查等邊三角形的性質(zhì),考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com