17.下列命題中的假命題是( 。
A.?x∈R,21-x>0
B.?a∈R,使函數(shù)y=xa的圖象關(guān)于y軸對(duì)稱
C.?a∈R,函數(shù)y=xa的圖象經(jīng)過第四象限
D.?x∈(0,+∞),使2x>x

分析 A.根據(jù)函數(shù)y=21-x的圖象可以判斷;
 B.當(dāng)a=0時(shí),函數(shù)y=xa的圖象關(guān)于y軸對(duì)稱,;
 C.對(duì)于函數(shù)y=xa的當(dāng)x為正值時(shí),y不可能為負(fù),;
 D,根據(jù)函數(shù)y=2x,y=x的圖象,可判定2x>x;

解答 解:對(duì)于A.根據(jù)函數(shù)y=21-x的圖象可以判斷A正確;
對(duì)于B.當(dāng)a=0時(shí),函數(shù)y=xa的圖象關(guān)于y軸對(duì)稱,故B正確;
對(duì)于C.對(duì)于函數(shù)y=xa的當(dāng)x為正值時(shí),y不可能為負(fù),故C錯(cuò);
對(duì)于D,根據(jù)函數(shù)y=2x,y=x的圖象,可判定2x>x,故D正確;
故選:C

點(diǎn)評(píng) 本題考查了命題真假的判斷,涉及到函數(shù)的圖象及性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某學(xué)校高三年級(jí)800名學(xué)生在一次百米測(cè)試中,成績(jī)?nèi)吭?2秒到17秒之間,抽取其中50個(gè)樣本,將測(cè)試結(jié)果按如下方式分成五組:第一組[12,13),第二組[13,14),…,第五組[16,17],如圖是根據(jù)上述分組得到的頻率分布直方圖.
(1)若成績(jī)小于13秒被認(rèn)為優(yōu)秀,求該樣本在這次百米測(cè)試中成績(jī)優(yōu)秀的人數(shù);
(2)請(qǐng)估計(jì)本次測(cè)試的平均成績(jī);
(3)若樣本中第一組只有一名女生,第五組只有一名男生,現(xiàn)從第一、第五組中各抽取1名學(xué)生組成一個(gè)實(shí)驗(yàn)組,求所抽取的2名同學(xué)中恰好為一名男生和一名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若變量x,y滿足約束條件$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y≥-1\end{array}\right.$,且z=2x+y的最大值和最小值分別為m和n,則m+n=(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知集合A={x|y=lg(x+1)},B=$\left\{{\left.x\right|\frac{3-x}{x}<0}\right\}$,則有( 。
A.-3∈AB.A∩B=(-1,0)C.A∪B=RD.A?B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=exsinx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)如果對(duì)于任意的$x∈[{0,\frac{π}{2}}]$,f(x)≥kx恒成立,求實(shí)數(shù)k的取值范圍;
(3)設(shè)函數(shù)F(x)=f(x)+excosx,$x∈[{-\frac{2015π}{2},\frac{2017π}{2}}]$,過點(diǎn)$M({\frac{π-1}{2},0})$作函數(shù)F(x)的圖象的所有切線,令各切點(diǎn)的橫坐標(biāo)按從小到大構(gòu)成數(shù)列{xn},求數(shù)列{xn}的所有項(xiàng)之和的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在平面直角坐標(biāo)系xOy中.已知直線l的普通方程為x-y-2=0,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2\sqrt{3}cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)),設(shè)直線l與曲線C交于A,B兩點(diǎn).
(1)求線段AB的長(zhǎng)
(2)已知點(diǎn)P在曲線C上運(yùn)動(dòng).當(dāng)△PAB的面積最大時(shí),求點(diǎn)P的坐標(biāo)及△PAB的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知圓F1:(x+1)2+y2=t2,圓F2:(x-1)2+y2=(2$\sqrt{2}$-t)2,0<t<2$\sqrt{2}$,當(dāng)兩個(gè)圓有公共點(diǎn)時(shí),所有可能的公共點(diǎn)組成的曲線記為C.
(1)求出曲線C的方程;
(2)已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),M、N、P為曲線C上不同三點(diǎn),$\overrightarrow{{F}_{2}M}$=λ$\overrightarrow{{F}_{2}N}$=μ$\overrightarrow{a}$,求△PMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)與橢圓$\frac{{x}^{2}}{{m}^{2}}$$+\frac{4{y}^{2}}{{m}^{2}}$=1的離心率互為倒數(shù),則雙曲線的漸近線方程是(  )
A.y=±$\frac{\sqrt{3}}{3}$xB.y=±$\frac{1}{3}$xC.y=±$\sqrt{3}$xD.y=$±\frac{\sqrt{3}}{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)=ax-$\frac{1}{x}$,g(x)=lnx,x>0,a∈R是常數(shù)
(Ⅰ)求曲線y=g(x)在點(diǎn)P(1,g(1)處的切線方程;
(Ⅱ)設(shè)F(x)=f(x)-g(x),討論函數(shù)F(x)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊(cè)答案