分析 (Ⅰ)利用兩角和的正弦公式展開,即可求得曲線C1的直角坐標(biāo)系方程,消去t,求得直線l的方程,利用點(diǎn)到直線的距離公式,即可求得|AB|的長(zhǎng)度;
(Ⅱ)同理求得曲線C2的直角坐標(biāo)系方程,P到直l的最小距離為$d=3\sqrt{2}-\sqrt{2}=2\sqrt{2}$,求得$|{AB}|=\sqrt{6}$,-1≤m≤3,即可求得△PAB的面積的最小值.
解答 解:(Ⅰ)∵$ρ=2\sqrt{2}sin(θ+\frac{π}{4})=2sinθ+2cosθ$,ρ2=2ρsinθ+2ρcosθ,
∴x2+y2=2x+2y,
即曲線C1的直角坐標(biāo)系方程為(x-1)2+(y-1)2=2…(2分)
直線l的直角坐標(biāo)系方程為x+y-1=0…(3分)
圓心C1到直線l的距離為d=$\frac{丨1+1-1丨}{\sqrt{{1}^{2}+{1}^{2}}}$=$\frac{\sqrt{2}}{2}$,…(4分)
∴$|{AB}|=2\sqrt{2-\frac{1}{2}}=\sqrt{6}$…(5分)
(Ⅱ)曲線C2的直角坐標(biāo)系方程為(x-3)2+(y-4)2=2…(6分)
P到直l的最小距離為$d=3\sqrt{2}-\sqrt{2}=2\sqrt{2}$,…(8分)
又$|{AB}|=\sqrt{6}$,-1≤m≤3,
∴△PAB的面積的最小值為$2\sqrt{3}$…(10分)
點(diǎn)評(píng) 本題考查圓的極坐標(biāo)方程,直線與圓的位置關(guān)系,考查點(diǎn)到直線的距離公式,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
不患肺癌 | 患肺癌 | 總計(jì) | |
不吸煙 | 7775 | 42 | 7817 |
吸煙 | d | ||
總計(jì) | 9874 | 9965 |
A. | 48 | B. | 49 | C. | 50 | D. | 51 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com