13.已知$\overrightarrow a$=(2,1),$\overrightarrow b$=(m,-1),若$\overrightarrow a∥\overrightarrow b$,則m=-2.

分析 根據(jù)向量關(guān)系的坐標(biāo)公式進(jìn)行求解即可.

解答 解:∵$\overrightarrow a$=(2,1),$\overrightarrow b$=(m,-1),
∴若$\overrightarrow a∥\overrightarrow b$,則$\frac{m}{2}=\frac{-1}{1}$,即m=-2,
故答案為:-2

點(diǎn)評(píng) 本題主要考查向量平行的坐標(biāo)運(yùn)算,根據(jù)向量平行的公式是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知P為圓x2+y2=4上的動(dòng)點(diǎn).定點(diǎn)A的坐標(biāo)為(3,4),則線段AP中點(diǎn)M的軌跡方程(x-$\frac{3}{2}$)2+(y-2)2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合A={x|lnx≤0},B={x∈R|z=x+i,$|z|≥\frac{{\sqrt{5}}}{2}$,i是虛數(shù)單位},A∩B=(  )
A.$({-∞,-\frac{1}{2}}]∪[{\frac{1}{2},1}]$B.$[{\frac{1}{2},1}]$C.(0,1]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=ex-kx2在區(qū)間(0,+∞)上單調(diào)遞增,則k的取值范圍是(-∞,$\frac{e}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,若${a_n}=\frac{1}{(n+1)(n+2)}$,則S8=$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.給出如下五個(gè)結(jié)論:
①y=sinx在第一象限內(nèi)是增函數(shù);     
②存在區(qū)間(a,b),使y=cosx為減函數(shù)而sinx<0;
③y=tanx在其定義域內(nèi)為增函數(shù);     
④y=cosx+sin($\frac{π}{2}$-x)既有最大值和最小值,又是偶函數(shù);
⑤y=sin|2x+$\frac{π}{6}$|的最小正周期為π.
其中正確結(jié)論的序號(hào)是④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)函數(shù)f(x)在R上存在導(dǎo)函數(shù)f′(x),對于任意的實(shí)數(shù)x,都有f(x)=4x2-f(-x),當(dāng)x∈(-∞,0)時(shí),f′(x)<4x,若f(m+1)≤f(-m)+4m+2,則實(shí)數(shù)m的取值范圍是( 。
A.[-$\frac{1}{2}$,+∞)B.[-$\frac{3}{2}$,+∞)C.[-1,+∞)D.[-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某化肥廠生產(chǎn)甲、乙兩種混合肥料,需要A,B,C三種主要原料,生產(chǎn)1車皮甲種肥料和生產(chǎn)1車皮乙種肥料所需三種原料的噸數(shù)如下表所示:
肥料  原料ABC
483
5510
現(xiàn)有A種原料200噸,B種原料360噸,C種原料300噸,在此基礎(chǔ)上生產(chǎn)甲、乙兩種肥料.已知生產(chǎn)1車皮甲種肥料,產(chǎn)生的利潤為2萬元;生產(chǎn)1車皮乙種肥料,產(chǎn)生的利潤為3萬元、分別用x,y表示計(jì)劃生產(chǎn)甲、乙兩種肥料的車皮數(shù).
(Ⅰ)用x,y列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(Ⅱ)問分別生產(chǎn)甲、乙兩種肥料各多少車皮,能夠產(chǎn)生最大的利潤?并求出此最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為$ρ=2\sqrt{2}sin(θ+\frac{π}{4})$,直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=1-\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t為參數(shù)),直線l與曲線C1交于A,B兩點(diǎn).
(Ⅰ)求|AB|的長度;
(Ⅱ)若曲線C2的參數(shù)方程為$\left\{{\begin{array}{l}{x=3+\sqrt{2}cosα}\\{y=4+\sqrt{2}sinα}\end{array}}\right.$(α為參數(shù)),P為曲線C2上的任意一點(diǎn),求△PAB的面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案