分析 (1)f′(x)=(x2+2x+1-a)ex,令u(x)=x2+2x+1-a=(x+1)2-a.u(-1)=-a,u(-2)=1-a,u(2)=9-a.由函數(shù)f(x)在區(qū)間[-2,2]上是單調(diào)函數(shù),可得u(x)≤0,或u(x)≥0,x∈[-2,2].利用二次函數(shù)的單調(diào)性即可得出.
(2)f(x)有兩個(gè)不同的極值點(diǎn)m,n(m<n),即u(x)=x2+2x+1-a=(x+1)2-a=0有兩個(gè)不等的實(shí)數(shù)根m,n.可得-a<0,且m+n=-2,mn=1-a.再根據(jù)2(m+n)≤mn-1,可得0<a≤4.另一方面:m=-1-$\sqrt{a}$.F(x)=e2f(x)+g(x)=ex+2(2x2-a-1),F(xiàn)(m)=em+2(2m2-a-1)=${e}^{1-\sqrt{a}}$$(a+4\sqrt{a}+1)$,令$\sqrt{a}$=t∈(0,2].令h(t)=e1-t(t2+4t-1),t∈(0,2].利用導(dǎo)數(shù)研究其單調(diào)性極值與最值即可得出.
解答 解:(1)f′(x)=(x2+2x+1-a)ex,
令u(x)=x2+2x+1-a=(x+1)2-a.
u(-1)=-a,u(-2)=1-a,u(2)=9-a.
∵函數(shù)f(x)在區(qū)間[-2,2]上是單調(diào)函數(shù),∴u(x)≤0,或u(x)≥0,x∈[-2,2].
∴9-a≤0,或-a≥0,
解得a≥9,或a≤0.
∴a≥9時(shí),u(x)≤0,f′(x)≤0,函數(shù)f(x)在x∈[-2,2]上單調(diào)遞減.
a≤0時(shí),u(x)≥0,f′(x)≥0,函數(shù)f(x)在x∈[-2,2]上單調(diào)遞增.
(2)∵f(x)有兩個(gè)不同的極值點(diǎn)m,n(m<n),
∴u(x)=x2+2x+1-a=(x+1)2-a=0有兩個(gè)不等的實(shí)數(shù)根m,n.
∴-a<0,解得a>0.
且m+n=-2,mn=1-a.
∵2(m+n)≤mn-1,
∴-4≤1-a-1,解得a≤4.
∴0<a≤4.
另一方面:m=-1-$\sqrt{a}$.
F(x)=e2f(x)+g(x)=e2•(x2-a+1)ex+(x2-2)ex+2=ex+2(2x2-a-1),
F(m)=em+2(2m2-a-1)=${e}^{1-\sqrt{a}}$$(a+4\sqrt{a}+1)$,令$\sqrt{a}$=t∈(0,2].
則h(t)=e1-t(t2+4t-1),t∈(0,2].
h′(t)=$\frac{-e({t}^{2}+2t-5)}{{e}^{t}}$=$\frac{-e[t+(1+\sqrt{6})][t-(\sqrt{6}-1)]}{{e}^{t}}$,
∴h(t)在(0,$\sqrt{6}$-1]上單調(diào)遞增,在($\sqrt{6}$-1,2]上單調(diào)遞減.
h(0)=-e,h(2)=$\frac{7}{e}$,$h(\sqrt{6}-1)$=2+2$\sqrt{6}$.
∴h(t)∈$(-e,2+2\sqrt{6}]$.
即F(m))∈$(-e,2+2\sqrt{6}]$.
點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值、方程與不等式的解法,考查了推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [1,+∞) | B. | (0,1] | C. | [$\frac{1}{2}$,+∞) | D. | (0,$\frac{1}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 7、8 | B. | 5、7 | C. | 8、5 | D. | 7、7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com