6.曲線$y=\frac{lnx}{x}$在x=1處的切線斜率等于1.

分析 求出函數(shù)的導(dǎo)數(shù),計算出切線的斜率即可.

解答 解:y′=$\frac{1-lnx}{{x}^{2}}$,
則y′|x=1=1,
故答案為:1.

點評 本題考查了切線斜率問題,考查導(dǎo)數(shù)的幾何意義,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$8-\frac{4}{3}π$B.$8-\frac{8}{3}π$C.24-πD.24+π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知實數(shù)x,y滿足-1≤x+y≤4且2≤x-y≤3,則不等式圍成的區(qū)域面積為$\frac{5}{2}$,則2x-3y的取值范圍是[3,8].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=(x2-a+1)ex,g(x)=(x2-2)ex+2
(1)若函數(shù)f(x)在區(qū)間[-2,2]上是單調(diào)函數(shù),求實數(shù)a的取值范圍;
(2)若f(x)有兩個不同的極值點m,n(m<n),且2(m+n)≤mn-1,記F(x)=e2f(x)+g(x),求F(m)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.計算題
(1)$\frac{1-2i}{3+4i}$
(2)設(shè)復(fù)數(shù)z滿足i(z-4)=3+2i(i是虛數(shù)單位),求z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知x+y+z=1.
證明:(1)x2+y2+z2≥xy+yz+zx,
(2)x2+y2+z2≥$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在三棱柱ABC-A1B1C1中,AC=BC=2,∠ACB=120°,D為A1B1的中點.
(Ⅰ)證明:A1C∥平面BC1D;
(Ⅱ)若A1A=A1C,點A1在平面ABC的射影在AC上,且側(cè)面A1ABB1的面積為$2\sqrt{3}$,求三棱錐A1-BC1D的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若$\overrightarrow a+\overrightarrow b+\overrightarrow c=\overrightarrow 0$,且$\overrightarrow a$與$\overrightarrow c$的夾角為60°,$\overrightarrow a$與$\overrightarrow b$的夾角為θ,$|{\overrightarrow b}|=\sqrt{3}|{\overrightarrow a}|$,則tanθ=(  )
A.$\sqrt{3}$B.$\frac{{\sqrt{3}}}{3}$C.-$\frac{{\sqrt{3}}}{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某幾何體的三視圖,則該幾何體的表面積為( 。
A.3π+$\sqrt{3}$B.3π+$\sqrt{3}$+1C.5π+$\sqrt{3}$D.5π+$\sqrt{3}$+1

查看答案和解析>>

同步練習(xí)冊答案