分析 (1)由a1=S1,n>1時(shí),an=Sn-Sn-1,結(jié)合等差數(shù)列的定義和通項(xiàng)公式即可得到;
(2)求得$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{2}$($\frac{1}{2n+1}$-$\frac{1}{2n+3}$),運(yùn)用數(shù)列的求和方法:裂項(xiàng)相消求和,化簡(jiǎn)整理,即可得到所求和.
解答 (1)證明:Sn=n2+2n,
可得a1=S1=3,
n>1時(shí),an=Sn-Sn-1=n2+2n-(n-1)2-(n-1)=2n+1.
綜上可得an=2n+1(n∈N*),
即an-an-1=2,
則數(shù)列{an}是首項(xiàng)為3和公差為2的等差數(shù)列,
數(shù)列{an}的通項(xiàng)公式an=2n+1;
(2)解:$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(2n+1)(2n+3)}$=$\frac{1}{2}$($\frac{1}{2n+1}$-$\frac{1}{2n+3}$),
即有前n項(xiàng)和為T(mén)n=$\frac{1}{2}$($\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{7}$+$\frac{1}{7}$-$\frac{1}{9}$+…+$\frac{1}{2n+1}$-$\frac{1}{2n+3}$)
=$\frac{1}{2}$($\frac{1}{3}$-$\frac{1}{2n+3}$)=$\frac{n}{3(2n+3)}$.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)和求和的關(guān)系,考查等差數(shù)列的定義和通項(xiàng)公式的運(yùn)用,以及數(shù)列的求和方法:裂項(xiàng)相消求和,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\left\{\begin{array}{l}{x=4{t}^{2}}\\{y=4t}\end{array}\right.$(t為參數(shù)) | B. | $\left\{\begin{array}{l}{x=\frac{{t}^{2}}{4}}\\{y=t}\end{array}\right.$(t為參數(shù)) | ||
C. | $\left\{\begin{array}{l}{x={t}^{2}}\\{y=2t}\end{array}\right.$(t為參數(shù)) | D. | $\left\{\begin{array}{l}{x=2{t}^{2}}\\{y=2t}\end{array}\right.$(t為參數(shù)) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 29 | B. | 30 | C. | 31 | D. | 32 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {0,2,3} | B. | {0,1,2} | C. | {0,2,4} | D. | {0,2,3,6} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | b>a>c | B. | c>a>b | C. | a>b>c | D. | c>b>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | $\sqrt{5}$ | C. | 25 | D. | 10 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com