13.已知命題:
①α>β的充分不必要條件是sinα>sinβ
②若a,b∈R,ab<0,則$\frac{a}+\frac{a}≤-2$
③命題“若x+y≠5,則x≠2或y≠3”的否命題為假命題
④若a≠b,則a3+b3>a2b+ab2
其中真命題的序號是②③.(請把所有真命題的序號都填上)

分析 ①,sinα>sinβ時,α>β不一定成立;
②,若a,b∈R,ab<0,$\frac{a}+\frac{a}=-(-\frac{a}+\frac{-a})≤-2$,則$\frac{a}+\frac{a}≤-2$;
③,其否命題:命題“若x+y=5,則x=2且y=3”,為假命題;
④,由a3+b3-a2b-ab2=(a-b)2(a+b),符號不確定;

解答 解:對于①,sinα>sinβ時,α>β不一定成立,故錯;
對于②,若a,b∈R,ab<0,$\frac{a}+\frac{a}=-(-\frac{a}+\frac{-a})≤-2$,則$\frac{a}+\frac{a}≤-2$;故正確;
對于③,其否命題:命題“若x+y=5,則x=2且y=3”,為假命題,正確;
對于④,∵a3+b3-a2b-ab2=(a-b)2(a+b),符號不確定,故錯;
故答案為:②③

點評 本題考查了命題真假的判定,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點($\sqrt{2}$,1),且離心率為$\frac{\sqrt{2}}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)M、N是橢圓C上的點,直線OM與ON(O為坐標原點)的斜率之積為-$\frac{1}{2}$,若動點P滿足$\overrightarrow{OP}$=$\overrightarrow{OM}$+2$\overrightarrow{ON}$,試探究,是否存在兩個定點F1,F(xiàn)2,使得|PF1|+|PF2|為定值?若存在,求F1,F(xiàn)2的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知直線ax+y+a+1=0,不論a取何值,該直線恒過的定點是( 。
A.(-1,-1)B.(-1,1)C.(1,1)D.(1,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.函數(shù)f(x)=$\frac{1}{1+{x}^{2}}$的值域是( 。
A.{y|y≠0}B.(0,1]C.(0,1)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.命題“?x>0,x2>0”的否定是( 。
A.?x>0,x2<0B.?x>0,x2≤0C.?x0>0,x2<0D.?x0>0,x2≤0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若a>b>0,c<d<0,則一定有( 。
A.ad>bcB.ad<bcC.ac>bdD.ac<bd

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知$\overrightarrow a=(4,-2),\overrightarrow b=(cosα,sinα)$且$\overrightarrow a⊥\overrightarrow b$,則$\frac{{{{sin}^3}α+{{cos}^3}α}}{sinα-cosα}$為( 。
A.2B.$\frac{9}{5}$C.3D.$-\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.在△ABC中,a,b,c分別是角A,B,C的對邊,C=2A,cosA=$\frac{3}{4}$,$\overrightarrow{BA}$•$\overrightarrow{BC}$=$\frac{27}{2}$,則b=5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.在數(shù)列{an}和{bn}中,a1=$\frac{1}{2}$,{an}的前n項為Sn,滿足Sn+1+($\frac{1}{2}$)n+1=Sn+($\frac{1}{2}$)n(n∈N*),bn=(2n+1)an,{bn}的前n項和為Tn
(1)求數(shù)列{bn}的通項公式bn以及Tn
(2)若T1+T3,mT2,3(T2+T3)成等差數(shù)列,求實數(shù)m的值.

查看答案和解析>>

同步練習冊答案