A. | $f(x)=\sqrt{3}sin(\frac{π}{2}x+\frac{π}{3})$ | B. | $f(x)=\sqrt{3}sin(\frac{π}{2}x-\frac{π}{6})$ | ||
C. | $f(x)=\sqrt{3}sin(\frac{2π}{3}x+\frac{5π}{18})$ | D. | $f(x)=\sqrt{3}sin(πx+\frac{π}{6})$ |
分析 由已知可得A=$\sqrt{3}$,設(shè)其周期為T,則:P($\frac{1}{3}$,$\sqrt{3}$),R($\frac{1}{3}+$$\frac{3T}{4}$,0),Q($\frac{1}{3}$+$\frac{1}{2}$T,-$\sqrt{3}$),由兩點(diǎn)間距離公式,勾股定理可求T,利用周期公式可求ω,由f($\frac{1}{3}$)=$\sqrt{3}$,可得φ,即可得解函數(shù)解析式.
解答 解:由已知可得A=$\sqrt{3}$,
設(shè)其周期為T,則:P($\frac{1}{3}$,$\sqrt{3}$),R($\frac{1}{3}+$$\frac{3T}{4}$,0),Q($\frac{1}{3}$+$\frac{1}{2}$T,-$\sqrt{3}$),
由于PR⊥QR,可得:PR2+RQ2=PQ2,
可得:($\frac{1}{3}+$$\frac{3T}{4}$-$\frac{1}{3}$)2+(0-$\sqrt{3}$)2+($\frac{1}{3}$+$\frac{1}{2}$T-$\frac{1}{3}$-$\frac{3T}{4}$)2+(-$\sqrt{3}$-0)2=($\frac{1}{3}+$$\frac{1}{2}T$-$\frac{1}{3}$)2+(-$\sqrt{3}$-$\sqrt{3}$)2,
整理可得:T2=16,解得:T=4,ω=$\frac{2π}{T}$=$\frac{π}{2}$,
由于f($\frac{1}{3}$)=$\sqrt{3}$,可得:$\sqrt{3}$sin($\frac{π}{2}$×$\frac{1}{3}$+φ)=$\sqrt{3}$,
所以,φ+$\frac{π}{6}$=2kπ+$\frac{π}{2}$,k∈Z,解得:φ=2kπ+$\frac{π}{3}$,k∈Z,
所以,當(dāng)k=0時(shí),φ=$\frac{π}{3}$,函數(shù)f(x)的解析式是f(x)=$\sqrt{3}$sin($\frac{π}{2}$x+$\frac{π}{3}$).
故選:A.
點(diǎn)評 本題主要考查了由y=Asin(ωx+φ)的部分圖象確定其解析式,考查了勾股定理及正弦函數(shù)的圖象和性質(zhì)的應(yīng)用,考查了數(shù)形結(jié)合思想,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,1} | B. | {0} | C. | {2,3} | D. | {1,2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | -2i | D. | 2i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
x | 1 | 2 | 3 | 4 |
f(x) | 2 | 3 | 4 | 1 |
f′(x) | 3 | 4 | 2 | 1 |
g(x) | 3 | 1 | 4 | 2 |
g′(x) | 2 | 4 | 1 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com