16.已知m,n是兩條不重合的直線,α,β,γ是三個兩兩不重合的平面,給出下列四個命題:
①若m⊥α,m⊥β,則α∥β;
②若α⊥γ,β⊥γ,則α∥β;
③若m?α,n?β,m∥n,則α∥β;
④若m,n是異面直線,m?α,m∥β,n∥α,則α∥β.
其中真命題是(  )
A.①和④B.①和③C.③和④D.①和②

分析 在①中,由線面角的定義可知平面α∥β;在②中,兩個平面α,β也可能相交;在③中,兩個平面α,β有可能相交;在④中,借助異面直線平移后不相交的結(jié)論及面面平行的判定定理可知α∥β.

解答 解:在①中,由線面角的定義可知答案①中的直線m⊥α,m⊥β,則平面α∥β是正確的,故①正確;
在②中,兩個平面α,β也可能相交,故①不正確;
在③中,兩個平面m?α,n?β可以推出兩個平面α,β相交,故③不正確;
在④中,可將直線n平移到平面α內(nèi),借助異面直線平移后不相交的結(jié)論及面面平行的判定定理可知α∥β,故④正確.
故選:A.

點(diǎn)評 本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=log3$\frac{1+x}{a-x}$為其定義域內(nèi)的奇函數(shù).
(1)求實(shí)數(shù)a的值;
(2)求不等式f(x)>1的解集;
(3)證明:$f(\frac{1}{3})$為無理數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=4cosωx•sin(ωx+$\frac{π}{4}$)(ω>0)的最小正周期為π.
(Ⅰ)求ω的值
(Ⅱ)求f(x)在區(qū)間[0,2]上的最小值以及此時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.甲、乙兩個班級進(jìn)行一門考試,按照學(xué)生考試成績優(yōu)秀和不優(yōu)秀統(tǒng)計成績后,得到如下列聯(lián)表:
優(yōu)秀不優(yōu)秀合計
甲班103545
乙班73845
合計177390
利用獨(dú)立性檢驗估計,你認(rèn)為推斷“成績與班級有關(guān)系”錯誤的概率介于( 。
A.0.3~0.4B.0.4~0.5C.0.5~0.6D.0.6~0.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)$f(x)=\frac{1}{3}{x^3}+{x^2}-3x$,討論函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.將大小形狀相同的3個黃球和5個黑球放入如圖所示的2×5的十宮格中,每格至多放一個,要求相鄰方格的小球不同色(有公共邊的兩個方格為相鄰),如果同色球不加以區(qū)分,則所有不同的放法種數(shù)為( 。
A.40B.36C.24D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)$f(x)=\frac{x^3}{3}+{x^2}-3x-\frac{2}{3}$.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)用反證法證明:在[-1,1]上,不存在不同的兩點(diǎn)(x1,f(x1)),(x2,f(x2)),使得f(x)的圖象在這兩點(diǎn)處的切線相互平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知$\overrightarrow a,\overrightarrow b$是兩個非零向量,且$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a}|+|{\overrightarrow b}|$,則下列說法正確的是( 。
A.$\overrightarrow a+\overrightarrow b=\overrightarrow 0$B.$\overrightarrow a=\overrightarrow b$
C.$\overrightarrow a$與$\overrightarrow b$共線反向D.存在正實(shí)數(shù)λ,使$\overrightarrow a=λ\overrightarrow b$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.正三棱錐的底面邊長為2,三條側(cè)棱兩兩互相垂直,則此棱錐的體積為(  )
A.$\frac{{\sqrt{2}}}{3}$B.$\frac{2}{3}\sqrt{2}$C.$\sqrt{2}$D.$\frac{4}{3}\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案