5.甲乙兩人下棋比賽,規(guī)定誰比對方先多勝兩局誰就獲勝,比賽立即結(jié)束;若比賽進行完6局還沒有分出勝負則判第一局獲勝者為最終獲勝且結(jié)束比賽.比賽過程中,每局比賽甲獲勝的概率為$\frac{2}{3}$,乙獲勝的概率為$\frac{1}{3}$,每局比賽相互獨立.求:
(1)比賽兩局就結(jié)束且甲獲勝的概率;
(2)恰好比賽四局結(jié)束的概率;
(3)在整個比賽過程中,甲獲勝的概率.

分析 (1)由題意可知比賽兩局就結(jié)束且甲獲勝必須第一、第二局比賽都是甲獲勝,由此能求出比賽兩局就結(jié)束且甲獲勝的概率.
(2)由題意知前兩局比賽為平手,第三、第四局比賽為同一個人勝,由此能求出恰好比賽四局結(jié)束的概率.
(3)由題意知在整個比賽過程中第一、第二局比賽兩人為平手,第三、第四比賽兩人也為平手,第五、第六局都為甲獲勝,或者在第一、第二局比賽兩人為平手,第三、第四局比賽兩人也為平手,第五、第六局比賽為平手但第一局是甲獲勝.由此能求出甲獲勝的概率.

解答 解:(1)由題意可知比賽兩局就結(jié)束且甲獲勝必須第一、第二局比賽都是甲獲勝,
∴比賽兩局就結(jié)束且甲獲勝的概率為$P=\frac{2}{3}×\frac{2}{3}=\frac{4}{9}$;…(3分)
(2)由題意知前兩局比賽為平手,第三、第四局比賽為同一個人勝,
∴恰好比賽四局結(jié)束的概率為$P=C_2^1({\frac{2}{3}})({\frac{1}{3}})({{{({\frac{2}{3}})}^2}+{{({\frac{1}{3}})}^2}})$=$\frac{20}{81}$;…(7分)
(3)由題意知在整個比賽過程中第一、第二局比賽兩人為平手,
第三、第四比賽兩人也為平手,第五、第六局都為甲獲勝,
或者在第一、第二局比賽兩人為平手,第三、第四局比賽兩人也為平手,
第五、第六局比賽為平手但第一局是甲獲勝.
∴在整個比賽過程中,甲獲勝的概率為$P={[{C_2^1({\frac{2}{3}})({\frac{1}{3}})}]^2}{({\frac{2}{3}})^2}+({\frac{2}{3}})({\frac{1}{3}}){[{C_2^1({\frac{2}{3}})({\frac{1}{3}})}]^2}=\frac{32}{243}$.…(12分)

點評 本題考查概率的求法,是基礎(chǔ)題,解題時要認真審題,注意相互獨立事件概率乘法公式、互斥事件概率加法公式的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

15.如表提供了某廠節(jié)能降耗技術(shù)改造后在生產(chǎn)A產(chǎn)品過程中紀錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸)的幾組對應(yīng)數(shù)據(jù):
x3456
y2.5n44.5
根據(jù)上表提供的數(shù)據(jù),求得y關(guān)于x的線性回歸方程為$\widehat{y}$=0.7x+0.35,那么表中n的值為(  )注($\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$,$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$)
A.3B.3.15C.3.5D.4.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}\int_1^e{\frac{1}{t}dt,x>\sqrt{2}}\\ \frac{1}{3},x≤\sqrt{2}\end{array}\right.$,若$f({x_0})>\frac{1}{2}$,則x0的取值范圍為x0>$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.定義在R上的單調(diào)函數(shù)f(x)滿足:f(x+y)=f(x)+f(y),若F(x)=f(asinx)+f(sinx+cos2x-3)在(0,π)上有零點,則a的取值范圍是[2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.如圖,在四棱錐P-ABCD中,側(cè)面PAD是邊長為4的正三角形,底面ABCD為正方形,側(cè)面PAD⊥底面ABCD,M為底面ABCD內(nèi)的一個動點,且滿足$\overrightarrow{MP}•\overrightarrow{MC}=0$,則點M到直線AB的最短距離為(  )
A.$\sqrt{5}$B.$4-\sqrt{5}$C.$3-\sqrt{5}$D.$4-2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)f(x)=sin(2x+ϕ)(其中ϕ是實數(shù)),若$f(x)≤|{f({\frac{π}{6}})}|$對x∈R恒成立,且$f({\frac{π}{2}})>f(0)$,則f(x)的單調(diào)遞增區(qū)間是(  )
A.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z)B.$[{kπ,kπ+\frac{π}{2}}]({k∈Z})$C.$[{kπ+\frac{π}{6},kπ+\frac{2π}{3}}]({k∈Z})$D.$[{kπ-\frac{π}{2},kπ}]({k∈Z})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知菱形ABCD的邊長為2,∠ABC=60°,則$\overrightarrow{BD}$•$\overrightarrow{CD}$=6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.過橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點F作斜率為1的直線交橢圓于A,B兩點.若向量$\overrightarrow{OA}$+$\overrightarrow{OB}$與向量$\overrightarrow{a}$=(3,-1)共線,則該橢圓的離心率為( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{3}}{4}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.函數(shù)y=(1-sinx)2的導數(shù)是sin2x-2cosx.

查看答案和解析>>

同步練習冊答案