7.如圖是求樣本x1、x2、…x10平均數(shù)$\overline{x}$的程序框圖,圖中空白框中應填入的內容為( 。
A.S=S+xnB.S=S+$\frac{{x}_{n}}{n}$C.S=S+nD.S=S+$\frac{{x}_{n}}{10}$

分析 由題目要求可知:該程序的作用是求樣本x1,x2,…,x10平均數(shù)$\overline{x}$,循環(huán)體的功能是累加各樣本的值,故應為:S=S+xn

解答 解:由題目要求可知:該程序的作用是求樣本x1,x2,…,x10平均數(shù)$\overline{x}$,
由于“輸出$\overline{x}$”的前一步是“$\overline{x}$=$\frac{s}{n}$”,
故循環(huán)體的功能是累加各樣本的值,
故應為:S=S+xn
故選:A.

點評 算法是新課程中的新增加的內容,也必然是新高考中的一個熱點,應高度重視.程序填空也是重要的考試題型,這種題考試的重點有:①分支的條件②循環(huán)的條件③變量的賦值④變量的輸出.其中前兩點考試的概率更大.此種題型的易忽略點是:不能準確理解流程圖的含義而導致錯誤.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.如圖給出的是計算$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{20}$的值的一個程序框圖,其中判斷框內應填入的條件是( 。
A.i>8B.i>9C.i>10D.i>11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在圖所示的幾何體中,底面ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2,N為線段PB的中點.
(1)證明:NE⊥平面PBD;
(2)求四棱錐B-CEPD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.拋物線y=4ax2(a≠0)的焦點坐標是$(0,\frac{1}{16a})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知數(shù)列{an}的前n項和為Sn,且$\frac{1}{{a}_{n}+1}$=$\frac{3}{{a}_{n+1}+1}$,a2=5,則S6=722.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知a>0,b>0,c>0,函數(shù)f(x)=|x+a|-|x-b|+c的最大值為10.
(1)求a+b+c的值;
(2)求$\frac{1}{4}$(a-1)2+(b-2)2+(c-3)2的最小值,并求出此時a、b、c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.《九章算術•衰分》是我國古代內容極為豐富的數(shù)學名著,書中有如下問題:
    今有稟栗,大夫、不更、簪裹、上造、公士、凡五人,一十五斗,今有大夫一人后來,亦當稟五斗,倉無栗,欲以衰出之,問各幾何?
    現(xiàn)解決如下問題:原有大夫、不更、簪裹、上造、公士5種爵位各1人,現(xiàn)增加一名大夫,共計6人,按照爵位共獻出5斗栗,其中5種爵位的人所獻“稟栗”成等差數(shù)列{an},其公差d滿足d=-a5,請問6人中爵位為“簪裹”的人需獻出栗的數(shù)量是(  )
A.$\frac{3}{4}$斗B.$\frac{4}{5}$斗C.1斗D.$\frac{5}{4}$斗

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=lnx-2ax(其中a∈R).
(Ⅰ)當a=1時,求函數(shù)f(x)的圖象在x=1處的切線方程;
(Ⅱ)若f(x)≤1恒成立,求a的取值范圍;
(Ⅲ)設g(x)=f(x)+$\frac{1}{2}$x2,且函數(shù)g(x)有極大值點x0,求證:x0f(x0)+1+ax02>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左焦點為F,短軸的兩個端點分別為A、B,且|AB|=2,△ABF為等邊三角形.
(1)求橢圓C的方程;
(2)如圖,點M在橢圓C上且位于第一象限內,它關于坐標原點O的對稱點為N; 過點M 作x軸的垂線,垂足為H,直線NH與橢圓C交于另一點J,若$\overrightarrow{HM}•\overrightarrow{HN}=-\frac{1}{2}$,試求以線段NJ為直徑的圓的方程;
(3)已知l1、l2是過點A的兩條互相垂直的直線,直線l1與圓O:x2+y2=4相交于P、Q兩點,直線l2與橢圓C交于另一點R;求△PQR面積取最大值時,直線l1的方程.

查看答案和解析>>

同步練習冊答案