Processing math: 100%
4.如圖,圓O的直徑AB=10,C為圓上一點,BC=6.過C作圓O的切線l,AD⊥l于點D,且交圓O于點E,求DE長.

分析 由題意AC⊥BC,AC=10036=8,由已知得Rt△ACD∽Rt△ABC,從而AD=6.4,利用切割線定理、勾股定理,由此能求出DE的長.

解答 解:由題意AC⊥BC.AC=10036=8,
∵過C作圓的切線l,過A作l的垂線AD,垂足為D,AD交圓與E,
∴∠ACD=∠ABC,∴Rt△ACD∽Rt△ABC,
ACAB=ADAC
∴AD=6410=6.4
又DC2=DE•6.4,DC2+6.42=64,
解得DE=3.6.

點評 本題考查線段長的求法,是中檔題,解題時要認真審題,注意弦切角性質(zhì)、切割線定理的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.[普通高中]設(shè)不等式x2-2ax+a+2≤0的解集為非空數(shù)集M,且M⊆[1,4],求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.不等式-x2-x+2<0的解集為( �。�
A.{x|x<-2或 x>1 }B.{x|-2<x<1 }C.{x|x<-1 或x>2 }D.{x|-1<x<2 }

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在斜三棱柱ABC-A1B1C1中,側(cè)面ACC1A1與側(cè)面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2.
(1)求證:AB1⊥CC1;
(2)若AB1=6,求二面角C-AB1-A1的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=ax-lnx有極小值1+ln2
(Ⅰ)求實數(shù)a的值;
(Ⅱ)設(shè)g(x)=3x-3lnx-1-f(x),討論g(x)單調(diào)性;
(Ⅲ)若0<x1<x2,求證:x1x2lnx1lnx2<2x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在四棱錐P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點M恰好是AC中點,又PA=4,AB=43,∠CDA=120°,點N在線段PB上,且PN=2.
(1)求證:BD⊥PC;
(2)求證:MN∥平面PDC;
(3)求二面角A-PC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=x2-(-1)n2alnx(n∈Z,a>0).
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)若n=2016,且函數(shù)y=2ax-f(x)有唯一零點x0,求x0與a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,AB切⊙O于點B,點G為AB的中點,過G作⊙O的割線交⊙O于點C、D,連接AC并延長交⊙O于點E,連接AD并交⊙O于點F,求證:EF∥AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=cos2x+3sinx的值域是( �。�
A.[4178]B.4178+C.[-4,4]D.(-∞,-4)∪(4,+∞)

查看答案和解析>>

同步練習(xí)冊答案