設(shè)是定義在上的函數(shù),且,當(dāng)時,,那么當(dāng)時,=                .

試題分析:根據(jù)題意,由于函數(shù)是定義在上的函數(shù),且,說明是偶函數(shù),同時能根據(jù)當(dāng)當(dāng),因此可知,
點(diǎn)評:解決的關(guān)鍵是將變量轉(zhuǎn)換到已知區(qū)間來求解解析式,對稱性的運(yùn)用,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,則=               .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)在點(diǎn)(1,f(1))處的切線方程為y = 2.
(I)求f(x)的解析式;
(II)設(shè)函數(shù)若對任意的,總存唯一實(shí)數(shù),使得,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義運(yùn)算:,則函數(shù)的值域?yàn)椋?nbsp; )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù)
(1)寫出函數(shù)的遞減區(qū)間;
(2)討論函數(shù)的極大值或極小值,如有試寫出極值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
設(shè)函數(shù),曲線在點(diǎn)處的切線方程
(1)求的解析式,并判斷函數(shù)的圖像是否為中心對稱圖形?若是,請求其對稱中心;否則說明理由。
(2)證明:曲線上任一點(diǎn)的切線與直線和直線所圍三角形的面積為定值,并求出此定值.
(3) 將函數(shù)的圖象向左平移一個單位后與拋物線為非0常數(shù))的圖象有幾個交點(diǎn)?(說明理由)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共10分)
已知函數(shù)
(1)解關(guān)于的不等式;
(2)若函數(shù)的圖象恒在函數(shù)圖象的上方(沒有公共點(diǎn)),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù).
(1)設(shè),討論的單調(diào)性;
(2)若對任意,,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知定義在上的單調(diào)函數(shù)滿足:存在實(shí)數(shù),使得對于任意實(shí)數(shù),總有恒成立,則(i)      (ii)的值為       

查看答案和解析>>

同步練習(xí)冊答案