17.已知直線l:2x+y-1=0與圓C:x2+y2=1相交于A,B兩點(diǎn).
(1)求△AOB的面積(O為坐標(biāo)原點(diǎn));
(2)設(shè)直線ax+by=1與圓C:x2+y2=1相交于M,N兩點(diǎn)(其中a,b是實(shí)數(shù)),若OM⊥ON,試求點(diǎn)P(a,b)與點(diǎn)Q(0,1)距離的最大值.

分析 (1)直線l:2x+y-1=0與圓C:x2+y2=1聯(lián)立求出x,可得|AB|,求出圓心到直線的距離,即可求出三角形的面積;
(2)根據(jù)直線和圓的位置關(guān)系以及兩點(diǎn)間的距離公式即可得到結(jié)論.

解答 解:(1)直線l:2x+y-1=0與圓C:x2+y2=1聯(lián)立可得5x2-4x=0,∴x=0或x=$\frac{4}{5}$,
∴|AB|=$\sqrt{1+4}•\frac{4}{5}$=$\frac{4\sqrt{5}}{5}$.
圓心到直線的距離d=$\frac{1}{\sqrt{5}}$,
∴△AOB的面積S=$\frac{2}{5}$..------------(6分)
(2)由OM⊥ON可知△MON是等腰直角三角形,且圓C的半徑為1,所以圓心O到直線ax+by=1的距離為$\frac{{\sqrt{2}}}{2}$,即$\frac{1}{{\sqrt{{a^2}+{b^2}}}}=\frac{{\sqrt{2}}}{2}$,化簡(jiǎn)得a2+b2=2..------------(11分)
所以點(diǎn)P在以$\sqrt{2}$為半徑,原點(diǎn)為圓心的圓上運(yùn)動(dòng),故${|{PQ}|_{max}}=\sqrt{2}+1$..------------(15分)

點(diǎn)評(píng) 本題主要考查直線和圓的位置公式的應(yīng)用以及兩點(diǎn)間的距離公式,考查學(xué)生的計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=sin(x-$\frac{π}{6}}$)+cos(x-$\frac{π}{3}}$),g(x)=2sin2$\frac{x}{2}$.
(1)若θ是第一象限角,且f(θ)=$\frac{{3\sqrt{3}}}{5}$,求g(θ)的值;
(2)求使f(x)≥g(x)成立的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知全集為R,函數(shù)f(x)=ln(1-x)的定義域?yàn)榧螦,集合B={x|x2-x-6>0}.
(1)求A∪B,A∩(∁RB);
(2)若C={x|1-m<x<m},C⊆(A∩(∁RB)),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.用斜二測(cè)畫(huà)法畫(huà)水平放置的邊長(zhǎng)為2的正三角形的直觀圖,所得圖形的面積為( 。
A.$\frac{{\sqrt{6}}}{2}$B.$\frac{{\sqrt{6}}}{4}$C.$\frac{{\sqrt{2}}}{4}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.某幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{7}{3}π$;表面積為$(5+\sqrt{2})π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是( 。
(1)y=-|x|(x∈R)(2)y=-x3-x(x∈R)(3)y=($\frac{1}{2}$)x(x∈R)(4)y=-x+$\frac{2}{x}$.
A.(2)B.(1)(3)C.(4)D.(2)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.log3$\sqrt{27}$+($\frac{8}{125}$)${\;}^{-\frac{1}{3}}}$-(-$\frac{3}{5}$)0+$\root{4}{{{{16}^3}}}$=11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知f(x)=ax3+bx+1(ab≠0),若f(2016)=k,則f(-2016)=(  )
A.kB.-kC.1-kD.2-k

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.不等式$\frac{2x-1}{x+2}>1$的解集為  ( 。
A.{x|x<-2或x>3}B.{x|x<-3或x>2}C.{x|-2<x<3}D.{x|-3<x<2}

查看答案和解析>>

同步練習(xí)冊(cè)答案