17.已知方程$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{2-m}$=1表示焦點(diǎn)在y軸上的橢圓,則m的取值范圍是1<m<$\frac{3}{2}$;若該方程表示雙曲線,則m的取值范圍是m<1或m>2.

分析 利用方程表示橢圓、雙曲線的條件,得出不等式,即可得出結(jié)論.

解答 解:∵方程$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{2-m}$=1表示焦點(diǎn)在y軸上的橢圓,
∴2-m>m-1>0,
∴1<m<$\frac{3}{2}$;
方程表示雙曲線,則(m-1)(2-m)>0,∴m<1或m>2.
故答案為1<m<$\frac{3}{2}$;m<1或m>2.

點(diǎn)評(píng) 本題考查橢圓、雙曲線的條件,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,正方形ABCD和直角梯形BDEF所在的平面互相垂直,O為正方形ABCD的中心,AD=DE=2$\sqrt{2}$,EF∥BD,BD=2EF,DE⊥BD.
(Ⅰ)求證:OE∥平面BFC;
(Ⅱ)求二面角A-CF-B正弦值的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=x2-2ax+a.
(1)若對(duì)任意的實(shí)數(shù)x都有f(1+x)=f(1-x)成立,求實(shí)數(shù)a的值;
(2)若f(x)在區(qū)間[1,+∞)上為單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)當(dāng)x∈[-1,1]時(shí),求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.“微信搶紅包”自2015年以來異;鸨,在某個(gè)微信群某次進(jìn)行的搶紅包活動(dòng)中,若所發(fā)紅包的總金額為10元,被隨機(jī)分配為1.49元,1.81元,2.19元,3.41元,0.62元,0.48元,共6份,供甲、乙等6人搶,每人只能搶一次,則甲、乙二人搶到的金額之和不低于4元的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.雙曲線8mx2-my2=8的一個(gè)焦點(diǎn)是(3,0),那么m的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在平面直角坐標(biāo)系xOy中,已知R(x0,y0)是橢圓C:$\frac{x^2}{24}+\frac{y^2}{12}$=1上的一點(diǎn),從原點(diǎn)O向圓R:(x-x02+(y-y02=8作兩條切線,分別交橢圓于P,Q兩點(diǎn).
(1)若R點(diǎn)在第一象限,且直線OP、OQ互相垂直,求圓R的方程;
(2)若直線OP,OQ的斜率存在,并記為k1,k2,求k1k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)集合A={x|x2-4x+3<0},B={x|log2x>1},則A∩B=( 。
A.(-1,3)B.(-1,2)C.(1,3)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在如圖的程序框圖中,任意輸入一次x(0≤x≤1)與y(0≤y≤1),則能輸出“恭喜中獎(jiǎng)!”的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖所示的流程圖,若輸入x的值為0,則輸出x的值為( 。
A.2016B.2016.5C.2019D.2017.5

查看答案和解析>>

同步練習(xí)冊(cè)答案