3.已知函數(shù)$f(x)=\frac{1}{3}{x^3}+\frac{1-a}{2}{x^2}-ax-a,x∈R$,其中a>0,若函數(shù)f(x)在區(qū)間(-2,0)內恰有兩個零點,則a的取值范圍是(0,$\frac{1}{3}$).

分析 先求函數(shù)的導函數(shù),找出導函數(shù)的零點,把定義域由零點分成幾個區(qū)間判斷導函數(shù)在各區(qū)間內的符號,從而得到原函數(shù)在個區(qū)間內的單調性;的單調區(qū)間,說明函數(shù)在區(qū)間(-2,-1)內單調遞增,在區(qū)間(-1,0)內單調遞減,結合函數(shù)零點和方程根的轉化列式可求a的范圍.

解答 解:由函數(shù)$f(x)=\frac{1}{3}{x^3}+\frac{1-a}{2}{x^2}-ax-a,x∈R$,得f′(x)=x2+(1-a)x-a=(x+1)(x-a)
由f′(x)=0,得x1=-1,x2=a>0.
當x∈(-∞,-1)時,f′(x)>0,f(x)為增函數(shù),
當x∈(-1,a)時,f′(x)<0,f(x)為減函數(shù),
當x∈(a,+∞)時,f′(x)>0,f(x)為增函數(shù).
故函數(shù)f(x)的增區(qū)間是(-∞,-1),(a,+∞);減區(qū)間為(-1,a).
f(x)在區(qū)間(-2,-1)內單調遞增,在區(qū)間(-1,0)內單調遞減,
從而函數(shù)f(x)在區(qū)間(-2,0)內恰有兩個零點當且僅當$\left\{\begin{array}{l}{f(-2)<0}\\{f(-1)>0}\\{f(0)<0}\end{array}\right.$,
解得0<a<$\frac{1}{3}$.
所以a的取值范圍是(0,$\frac{1}{3}$).
故答案為:$({0,\frac{1}{3}})$.

點評 本題考查利用導數(shù)研究函數(shù)的單調性,考查分類討論的數(shù)學思想方法,會利用導數(shù)研究函數(shù)的單調區(qū)間以及根據(jù)函數(shù)的增減性得到函數(shù)的最值.掌握不等式恒成立時所取的條件.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,四棱錐C-ABB1A1內接于圓柱OO1,且A1A,B1B都垂直于底面圓O,BC過底面圓心O,M,N分別是棱AA1,CB1的中點,MN⊥平面CBB1
(1)證明:MN∥平面ABC;
(2)求四棱錐C-ABB1A1與圓柱OO1的體積比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點,AA1=AC=CB=$\frac{\sqrt{2}}{2}$AB.
(Ⅰ)證明:BC1∥平面A1CD
(Ⅱ)求點C1到平面DA1C的距離.
(Ⅱ)求二面角D-A1C-E的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知直線y=x+1與橢圓mx2+my2=1(m>n>0)相交于A,B兩點,若弦AB的中點的橫坐標等于-$\frac{1}{3}$,則雙曲線$\frac{y^2}{m^2}-\frac{x^2}{n^2}$=1的離心率等于( 。
A.2B.$\sqrt{2}$C.$\frac{{\sqrt{5}}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.計算:${({π-3.14})^0}-{8^{\frac{2}{3}}}+{({\frac{1}{5}})^{-2}}×\frac{3}{25}-{5^{{{log}_5}3}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)f(x)定義在實數(shù)集R上的偶函數(shù),且在區(qū)間[0,+∞)上單調遞減,若實數(shù)a滿足f(log2a)+f(log${\;}_{\frac{1}{2}}$a)≤2f(-1),則a的取值范圍是( 。
A.[2,+∞]∪(-∞,$\frac{1}{2}$]B.(0,$\frac{1}{2}$]∪[2,+∞)C.[$\frac{1}{2}$,2]D.(0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.如圖所示,點P在邊長為1的正方形的邊上運動,設M是CD邊的中點,則當P沿著A-B-C-M運動時,以點P經(jīng)過的路程x為自變量,三角形APM的面積為y的函數(shù),則y=f(x)的圖象形狀大致是下列圖中的(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.正方體ABCD-A1B1C1D1中直線BC1與平面BB1D1D所成角的余弦值是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,且經(jīng)過點(1,$\frac{3}{2}$)
(1)求橢圓C的方程;
(2)已知A為橢圓C的左頂點,直線l過右焦點F與橢圓C交于M,N兩點,若AM、AN的斜率k1,k2滿足k1+k2=6,求直線l的斜率.

查看答案和解析>>

同步練習冊答案