分析 (Ⅰ)利用兩角差的余弦函數(shù)公式,二倍角的正弦函數(shù)公式,特殊角的三角函數(shù)值化簡已知即可得解sin2α的值.
(II)利用誘導(dǎo)公式,特殊角的三角函數(shù)值,二倍角的余弦函數(shù)公式,兩角和的余弦函數(shù)公式化簡可求g(x)=$\frac{1}{2}$cos2x,利用余弦函數(shù)的有界性即可得解.
解答 解:(Ⅰ)因?yàn)閒(α)=cos(α-$\frac{π}{4}$)=$\frac{7\sqrt{2}}{10}$,
所以$\frac{\sqrt{2}}{2}$(cosα+sinα)=$\frac{7\sqrt{2}}{10}$,
所以 cosα+sinα=$\frac{7}{5}$.
平方得,cos2α+2sinαcosα+sin2α=$\frac{49}{25}$,
所以 sin2α=$\frac{24}{25}$.…(6分)
(II)因?yàn)間(x)=f(x)•f(x+$\frac{π}{2}$)=cos(x-$\frac{π}{4}$)cos(x+$\frac{π}{4}$)
=$\frac{\sqrt{2}}{2}$(cosx+sinx)$\frac{\sqrt{2}}{2}$(cosx-sinx)=$\frac{1}{2}$(cos2x-sin2x)
=$\frac{1}{2}$cos2x.…(10分)
所以g(x)的最大值為$\frac{1}{2}$;g(x)的最小值為-$\frac{1}{2}$.
點(diǎn)評 本題主要考查了兩角和與差的余弦函數(shù)公式,二倍角的正弦函數(shù)公式,特殊角的三角函數(shù)值,誘導(dǎo)公式,二倍角的余弦函數(shù)公式,余弦函數(shù)的有界性在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{435600}$-$\frac{{y}^{2}}{564400}$=1(x>0) | B. | $\frac{{x}^{2}}{64{0}^{2}}$-$\frac{{y}^{2}}{48{0}^{2}}$=1(x>0) | ||
C. | $\frac{{x}^{2}}{435600}$+$\frac{{y}^{2}}{564400}$=1 | D. | $\frac{{x}^{2}}{64{0}^{2}}$+$\frac{{y}^{2}}{48{0}^{2}}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=$\sqrt{2}$(x-$\frac{3π}{4}$) | B. | y=$\sqrt{2}$(x-$\frac{π}{4}$) | C. | y=$\sqrt{3}$(x-$\frac{π}{3}$) | D. | y=$\sqrt{3}$(x-$\frac{2π}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 34 | B. | 27 | C. | 25 | D. | 16 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com