17.為了研究某種細(xì)菌在特定條件下隨時間變化的繁殖情況,得到如表格所示實驗數(shù)據(jù),若t與y線性相關(guān).
天數(shù)t(天)34567
繁殖個數(shù)y(千個)568912
(1)求y關(guān)于t的回歸直線方程;
(2)預(yù)測t=8時細(xì)菌繁殖的個數(shù).
(回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\sum_{i=1}^{n}{t}_{i}{y}_{i}$=217,其中$\sum_{i=1}^n{{t_i}{y_i}}$=217,$\sum_{i=1}^n{{t_i}^2}$=135)

分析 (1)求出回歸系數(shù),即可求y關(guān)于t的回歸直線方程;
(2)當(dāng)t=8時,求出y,即可預(yù)測t=8時細(xì)菌繁殖的個數(shù).

解答 解:(1)由已知$\overline t=5,\overline y=8$,則$5\overline t\overline y=200$,$5{\overline t^2}=125$,
b=$\frac{217-200}{135-125}$=1.7所以,a=-0.5,
所以y關(guān)于t的回歸直線方程y=1.7t-0.5;
(2)當(dāng)t=8時,y=1.7×8-0.5=13.1(千個)

點評 本題考查線性回歸方程,考查學(xué)生的計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=axlnx,x∈(0,+∞),其中a為實數(shù),f′(x)為f(x)的導(dǎo)函數(shù),若f′(1)=3,則a的值為(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在三棱錐P-ABC中,PA⊥平面ABC,AB⊥AC,PA=1,AB=AC=$\sqrt{2}$,D為BC的中點,過點D作DQ∥AP,且DQ=1,連結(jié)QB,QC,QP.
(1)證明:AQ⊥平面PBC;
(2)求二面角B-AQ-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,AB為圓O的直徑,點C為圓O上的一點,且BC=$\sqrt{3}$AC,點D為線段AB上一點,且AD=$\frac{1}{3}$DB.PD垂直于圓O所在的平面.
(Ⅰ)求證:CD⊥平面PAB;
(Ⅱ)若PD=BD,求二面角C-PB-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若函數(shù)f(x)=ex-3-x+2a(a>0)有且只有兩個零點,則實數(shù)a的取值范圍是( 。
A.[0,1]B.(0,1)C.[1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,正方形ABCD與正方形ABEF構(gòu)成一個$\frac{π}{3}$的二面角,將△BEF繞BE旋轉(zhuǎn)一周.在旋轉(zhuǎn)過程中,( 。
A.直線AC必與平面BEF相交
B.直線BF與直線CD恒成$\frac{π}{4}$角
C.直線BF與平面ABCD所成角的范圍是[$\frac{π}{12}$,$\frac{π}{2}$]
D.平面BEF與平面ABCD所成的二面角必不小于$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=$\frac{{x}^{2}+ax}{{e}^{x}}$(a∈R).
(1)若f(x)在x=0處取得極值,確定a的值,并求此時曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若f(x)在[2,+∞) 上為減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=1nx-a(x-1)2的單調(diào)遞增區(qū)間是(0,$\frac{1+\sqrt{5}}{2}$)
(1)求實數(shù)a的值;
(2)證明:當(dāng)x>1時,f(x)<x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}是公差為2的等差數(shù)列,且a1,a4,a13成等比數(shù)列,數(shù)列{$\frac{_{n}}{{a}_{n}}$}是首項為1,公比為3的等比數(shù)列.
(1)求數(shù)列{an}、{bn}的通項公式;
(2)設(shè)數(shù)列{an+bn}的前n項和Rn,若不等式$\frac{{R}_{n}}{n}$≤λ•3n+n+3對n∈N*恒成立,求λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案