10.若方程x2+ax+2b=0的一個根在(0,1)內(nèi),另一個根在(1,2)內(nèi),則$\frac{b-2}{a+2}$的取值范圍是( 。
A.[-2,1)B.(-2,1)C.(-∞,-2)∪(1,+∞)D.(-∞,-2]∪[1,+∞)

分析 設(shè)f(x)=x2+ax+2b,根據(jù)二次函數(shù)的性質(zhì)與零點存在性定理可得f(0)>0、f(1)<0且f(2)>0.由此建立關(guān)于a、b的二元一次不等式組,設(shè)點E(a,b)為區(qū)域內(nèi)的任意一點,根據(jù)直線的斜率公式可得k=$\frac{b-2}{a+2}$表示D、E連線的斜率,將點E在區(qū)域內(nèi)運動并觀察直線的傾斜角的變化,即可算出k的取值范圍.

解答 解:設(shè)f(x)=x2+ax+2b,
∵方程x2+ax+2b=0的一個根在區(qū)間(0,1)內(nèi),另一個根在區(qū)間(1,2)內(nèi),
∴可得$\left\{\begin{array}{l}{f(0)=2b>0}\\{f(1)=1+a+2b<0}\\{f(2)=4+2a+2b>0}\end{array}\right.$.
作出滿足上述不等式組對應(yīng)的點(a,b)所在的平面區(qū)域,
得到△ABC及其內(nèi)部,即如圖所示的陰影部分(不含邊界).
其中A(-3,1),B(-2,0),C(-1,0),
設(shè)點E(a,b)為區(qū)域內(nèi)的任意一點,
則k=$\frac{b-2}{a+2}$,表示點E(a,b)與點D(-2,2)連線的斜率.
∵KAD=1,kCD=-2,結(jié)合圖形可知:KAD<k<KCD
∴k的取值范圍是(-2,1),
故選:B.

點評 本題著重考查了二次函數(shù)的性質(zhì)、零點存在性定理、二元一次不等式組表示的平面區(qū)域、直線的斜率公式與兩點間的距離公式等知識,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在直角坐標系xOy中,設(shè)傾斜角為α的直線:$\left\{\begin{array}{l}{x=2+tcosα}\\{y=\sqrt{3}+tsinα}\end{array}\right.$(t為參數(shù))與曲線C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù))相交于不同的兩點A,B.
(1)若α=$\frac{π}{3}$,求線段AB的長度;
(2)若直線的斜率為$\frac{\sqrt{5}}{4}$,且有已知點P(2,$\sqrt{3}$),求證:|PA|•|PB|=|OP|2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知x、y滿足$\frac{{x}^{2}}{3}$+y2=1,則u=|2x+y-4|+|3-x-2y|的取值范圍為( 。
A.[1,12]B.[0,6]C.[0,12]D.[1,13]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=|x-2|+|x+a|(a∈R).
(1)若a=1時,求不等式f(x)≥4的解集;
(2)若不等式f(x)≤2x的解集為[1,+∞),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.兩圓的極坐標方程分別為:ρ=-2cosθ,ρ=2sinθ,則它們公共部分的面積是( 。
A.π-2B.$\frac{π}{2}$C.$\frac{π}{4}$-$\frac{1}{2}$D.$\frac{π}{2}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=-\frac{12}{13}t}\\{y=\frac{5}{13}t-3}\end{array}\right.$(t為參數(shù)),曲線C的極坐標方程是ρ=-2cosθ.
(Ⅰ)將曲線C的極坐標方程化為直角坐標方程;
(Ⅱ)設(shè)直線l與y軸的交點是M,N是曲線C上一動點,求|MN|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知圓C的半徑為3,圓心在直線2x+y=0上且在x軸下方,x軸被圓C截得的弦長為2$\sqrt{5}$.
(Ⅰ)求圓C的方程;
(Ⅱ)是否存在過定點為P(0,-3)的直線l,使得以l被圓截得的弦為直徑的圓過原點?若存在,求出l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{{a{x^2}+x+b}}{x^2}$的單調(diào)遞減區(qū)間為(-∞,0)和(0,+∞).
(1)求實數(shù)b的值;
(2)當x>0時,有$\frac{1}{f(x)}$+f(ex)≥a+1成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知與圓C:x2+y2-2x-2y+1=0相切的直線l分別交x軸和y軸正軸于A,B兩點,O為原點,且|OA|=a,|OB|=b(a>2,b>2).求證:
(1)(a-2)(b-2)=2;
(2)求△AOB面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案