15.已知直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=-\frac{12}{13}t}\\{y=\frac{5}{13}t-3}\end{array}\right.$(t為參數(shù)),曲線C的極坐標(biāo)方程是ρ=-2cosθ.
(Ⅰ)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)設(shè)直線l與y軸的交點(diǎn)是M,N是曲線C上一動(dòng)點(diǎn),求|MN|的最大值.

分析 (I)曲線C的極坐標(biāo)方程是ρ=-2cosθ,即ρ2=-2ρcosθ,利用互化公式可得直角坐標(biāo)方程.
(II)直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=-\frac{12}{13}t}\\{y=\frac{5}{13}t-3}\end{array}\right.$(t為參數(shù)),令t=0,可得x=0,y=-3,可得M(0,-3).利用兩點(diǎn)之間的距離公式即可得出.

解答 解:(I)曲線C的極坐標(biāo)方程是ρ=-2cosθ,即ρ2=-2ρcosθ,
可得直角坐標(biāo)方程:x2+y2=-2x,
配方為:(x+1)2+y2=1,
可得圓心C(-1,0),半徑r=1.
(II)直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=-\frac{12}{13}t}\\{y=\frac{5}{13}t-3}\end{array}\right.$(t為參數(shù)),
令t=0,可得y=-3,可得M(0,-3).
∵|CM|=$\sqrt{(-1)^{2}+(-3)^{2}}$=$\sqrt{10}$,
∴|MN|的最大值為$\sqrt{10}$+1.

點(diǎn)評(píng) 本題考查了參數(shù)方程化為普通方程、極坐標(biāo)化為直角坐標(biāo)方程、直線與圓相交弦長問題、兩點(diǎn)之間的距離公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=xlnx-$\frac{a}{2}$x2-x+a(a∈R)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn),則實(shí)數(shù)a的取值范圍是(0,$\frac{1}{e}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=ln(mx)-x+1,g(x)=(x-1)ex-mx,m>0.
(Ⅰ)若f(x)的最大值為0,求m的值;
(Ⅱ)求證:g(x)僅有一個(gè)極值點(diǎn)x0,且$\frac{1}{2}$ln(m+1)<x0<m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在平面直角坐標(biāo)系xOy中,點(diǎn)M的坐標(biāo)是(-1,$\sqrt{3}$).以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,則M的極坐標(biāo)為( 。
A.(2,$-\frac{2π}{3}$)B.(2,$-\frac{π}{3}$)C.(2,$\frac{π}{3}$)D.(2,$\frac{2π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若方程x2+ax+2b=0的一個(gè)根在(0,1)內(nèi),另一個(gè)根在(1,2)內(nèi),則$\frac{b-2}{a+2}$的取值范圍是( 。
A.[-2,1)B.(-2,1)C.(-∞,-2)∪(1,+∞)D.(-∞,-2]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=xlnx,g(x)=$\frac{x}{{e}^{x}}$.
(1)記F(x)=f(x)-g(x),求證:F(x)=0在區(qū)間(1,+∞)內(nèi)有且僅有一個(gè)實(shí)根;
(2)用min{a,b}表示a,b中的最小值,設(shè)函數(shù)m(x)=min{f(x),g(x)},若方程m(x)=c在(1,+∞)有兩個(gè)不相等的實(shí)根x1,x2(x1<x2),記F(x)=0在(1,+∞)內(nèi)的實(shí)根x0
求證:$\frac{{x}_{1}+{x}_{2}}{2}$>x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.一顆骰子的六個(gè)面上分別標(biāo)有數(shù)字1、2、3、4、5、6,若以連續(xù)擲兩次骰子分別得到的點(diǎn)數(shù)m、n作為P點(diǎn)坐標(biāo),則點(diǎn)P落在圓x2+y2=16內(nèi)的概率為( 。
A.$\frac{1}{9}$B.$\frac{2}{9}$C.$\frac{1}{3}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=|x-a|+2a(a為實(shí)常數(shù)).
(1)若不等式f(x)≤3的解集為{x|-6≤x≤4},求a的值;
(2)若函數(shù)g(x)=f(x+a)-2a,當(dāng)a=3且3<m<6時(shí),解關(guān)于x的不等式f(x)-g(x)≥m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知集合$M=\left\{{s\left|{s=\frac{sinx}{{|{sinx}|}}+\frac{cosx}{{|{cosx}|}}+\frac{tanx}{{|{tanx}|}}}\right.+\frac{cotx}{{|{cotx}|}}}\right\}$,那么集合M的元素個(gè)數(shù)為(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案