13.在△ABC中,三個(gè)內(nèi)角A、B、C的對(duì)邊分別是a,b,c,sinA>sinB則下列結(jié)論不一定成立的是(  )
A.A>BB.sin2A>sin2BC.cos2A<cos2BD.a>b

分析 由題意,利用正弦定理,二倍角公式,依次判斷即可.

解答 解:由題意,sinA>sinB,正弦定理可得,a>b,A>B.∴A,D選項(xiàng)正確.
對(duì)于B選項(xiàng):sin2A=2sinAcosA,sin2B=2sinBcosB,
∵π>A>B>0,
設(shè)A=60°,B=45°,
則sin2A<sin2B.故B不對(duì).
對(duì)于C:cos2A=1-2sin2A,
cos2B=1-2sin2B,
∵sinA>sinB>0
∴cos2A<cos2B.∴C正確.
故選:B.

點(diǎn)評(píng) 本題考查了正弦定理,二倍角公式的靈活運(yùn)用,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.為了對(duì)某班學(xué)生的數(shù)學(xué)、物理成績(jī)進(jìn)行分析,從該班25位男同學(xué),15位女同學(xué)中隨機(jī)抽取一個(gè)容量為8的樣本.
(1)如果按性別比例分層抽樣,可以得到多少個(gè)不同的樣本?(只要求寫(xiě)出算式,不必計(jì)算出結(jié)果);
(2)若這8人的數(shù)學(xué)成績(jī)從小到大排序是65,68,72,79,81,88,92,95.物理成績(jī)從小到大排序是72,77,80,84,86,90,93,98.
①求這8人中恰有3人數(shù)學(xué)、物理成績(jī)均在85分以上的概率(結(jié)果用分?jǐn)?shù)表示);
②已知隨機(jī)抽取的8人的數(shù)學(xué)成績(jī)和物理成績(jī)?nèi)绫恚?br />
學(xué)生編號(hào)12345678
數(shù)學(xué)成績(jī)6568727981889295
物理成績(jī)7277808486909398
若以數(shù)學(xué)成績(jī)?yōu)榻忉屪兞縳,物理成績(jī)?yōu)轭A(yù)報(bào)變量y,求y關(guān)于x的線性回歸方程(系數(shù)精確到0.01);并求數(shù)學(xué)成績(jī)對(duì)于物理成績(jī)的貢獻(xiàn)率R2(精確到0.01).
參考公式:相關(guān)系數(shù):r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$,R2=r2,
回歸方程:$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,其$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$
參考數(shù)據(jù):$\overline{x}$=80,$\overline{y}$=85,$\sum_{i=1}^{8}$(xi-$\overline{x}$)2=868,$\sum_{i=1}^{8}$(yi-$\overline{y}$)2═518,$\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$)=664,$\sqrt{868}$≈29.5,$\sqrt{518}$≈22.8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖是某個(gè)幾何體的三視圖,則該幾何體的體積是( 。
A.$\sqrt{3}$B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在對(duì)吸煙與患肺病轉(zhuǎn)這兩個(gè)分類變量的獨(dú)立性減壓中,下列說(shuō)法真確的是( 。
①若K2的觀測(cè)值滿足K2≥6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系;
②若K2的觀測(cè)值滿足K2≥6.635,那么在100個(gè)吸煙的人中有99人患肺病;
③動(dòng)獨(dú)立性檢驗(yàn)可知,如果有99%的把握認(rèn)為吸煙與患肺病有關(guān)系時(shí),那么我們就認(rèn)為:每個(gè)吸煙的人有99%的可能性會(huì)患肺;
④從統(tǒng)計(jì)量中得到由99%的把握認(rèn)為吸煙與患肺病有關(guān)系時(shí),是指有1%的可能性使判斷出現(xiàn)錯(cuò)誤.
A.B.②③C.①④D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知f(x)=|x-1|+|x+2|.
(1)解不等式f(x)≥5;
(2)若關(guān)于x的不等式f(x)>a2-2a-5對(duì)任意的x∈R恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,若${a_1}=1,{S_n}=3{a_{n+1}}({n∈{N^*}}),則{S_n}$=$(\frac{4}{3})^{n-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=1+lnx-$\frac{k(x-2)}{x}$,其中k為常數(shù).
(1)若k=0,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若k=5,求f(x)零點(diǎn)的個(gè)數(shù);
(3)若k為整數(shù),且當(dāng)x>2時(shí),f(x)>0恒成立,求k的最大值.(參考數(shù)據(jù)ln8=2.08,ln9=2.20,ln10=2.30)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.與雙曲線$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1有共同的漸近線,且過(guò)點(diǎn)P(8,12)的雙曲線方程為$\frac{{y}^{2}}{108}-\frac{{x}^{2}}{192}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),且$f(1)=\frac{1}{2}$,不等式$f'(x)≤\frac{1}{x}+x$的解集為(0,1],則不等式$\frac{f(x)-lnx}{x^2}>\frac{1}{2}$的解集為( 。
A.(0,1)B.(0,+∞)C.(1,+∞)D.(0,1)∪(1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案