6.設(shè)x,y∈R+且xy-(x+y)=1,則(  )
A.$x+y≤2(\sqrt{2}+1)$B.$xy≤\sqrt{2}+1$C.$x+y≤{(\sqrt{2}+1)^2}$D.$xy≥{(\sqrt{2}+1)^2}$

分析 x,y∈R+且xy-(x+y)=1,可得xy=1+(x+y)≥1+2$\sqrt{xy}$,化簡解出即可得出.

解答 解:∵x,y∈R+且xy-(x+y)=1,
則xy=1+(x+y)≥1+2$\sqrt{xy}$,
化為:$(\sqrt{xy})^{2}$-2$\sqrt{xy}$-1≥0,
解得$\sqrt{xy}$≥1+$\sqrt{2}$,即xy$≥(1+\sqrt{2})^{2}$.
故選:D.

點評 本題考查了基本不等式的性質(zhì)、不等式的解法,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在△ABC中,已知AB=2,cos∠ABC=$\frac{1}{3}$,若點D為AC的中點,且BD=$\frac{\sqrt{17}}{2}$,則sinA=$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)定義在R上的函數(shù)$f(x)=\left\{\begin{array}{l}|{lg|{x-1}|}|,x≠1\\ 0,x=1\end{array}\right.$,則關(guān)于x的方程f2(x)+bf(x)+c=0有7個不同實數(shù)解的充要條件是為c=0且b<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知定義域為R的奇函數(shù)y=f(x)的導(dǎo)函數(shù)為y=f'(x),當(dāng)x≠0時,f'(x)+$\frac{f(x)}{x}$>0,若a=$\frac{1}{2}f({\frac{1}{2}}),b=-2f({-2}),c=-ln2f({ln\frac{1}{2}})$,則a,b,c的大小關(guān)系正確的是( 。
A.b<c<aB.a<c<bC.a<b<cD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知$\overrightarrow a=(2,1),\overrightarrow b=(-3,-4),\overrightarrow c⊥(\overrightarrow a-\overrightarrow b)$
(1)求$(2\overrightarrow a+3\overrightarrow b)•(\overrightarrow a-2\overrightarrow b)$;
(2)若向量$\overrightarrow c$為單位向量,求向量$\overrightarrow c$的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在棱長為a的正方體ABCD-A1B1C1D1中,M是AA1中點,則點A到平面MBD的距離是$\frac{{\sqrt{6}}}{6}a$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知A是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左頂點,F(xiàn)1,F(xiàn)2分別為左、右焦點,P為雙曲線上一點,G是△F1PF2的重心,若$\overrightarrow{GA}$=λ$\overrightarrow{P{F}_{1}}$,|$\overrightarrow{GA}$|=$\frac{5}{3}$,|$\overrightarrow{P{F}_{1}}$|+|$\overrightarrow{P{F}_{2}}$|=8,則雙曲線的標(biāo)準(zhǔn)方程為( 。
A.x2-$\frac{{y}^{2}}{8}$=1B.$\frac{{x}^{2}}{16}$-y2=1C.$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{12}$=1D.x2-$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)集合A={x|y=log2(x-1)},$B=\{y|y=\sqrt{2-x}\}$,則A∩B=( 。
A.(0,2]B.(1,2)C.(1,+∞)D.(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有委米依垣內(nèi)角,下周六尺,高五尺.問:積及為米幾何?”其意思為:“在屋內(nèi)墻角處堆放米(如圖,米堆為一個圓錐的四分之一),米堆底部的弧長為6尺,米堆的高為5尺,問堆放的米有多少斛?”已知1斛米的體積約為1.6立方尺,圓周率約為3,估算出堆放的米約有12.5斛.

查看答案和解析>>

同步練習(xí)冊答案