20.設動點P(x,y)(x≥0)到定點F(1,0)的距離比它到y(tǒng)軸的距離大1,記點P的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)設D(x0,2)是曲線C上一點,與兩坐標軸都不平行的直線l1,l2過點D,且它們的傾斜角互補.若直線l1,l2與曲線C的另一交點分別是M,N,證明直線MN的斜率為定值.

分析 (Ⅰ)由題意知,動點P(x,y)(x≥0)到定點F(1,0)的距離等于點P(x,y)到直線x=-1的距離,由拋物線的定義知點P的軌跡方程.
(Ⅱ)由D(x0,2)在曲線C上,得4=4x0⇒x0=1,從而D(1,2),設而不求的思想,利用韋達定理,通過直線l1,l2過點D,且它們的傾斜角互補建立關系,證明直線MN的斜率為定值.

解答 解:(Ⅰ)由題意知,動點P(x,y)(x≥0)到定點F(1,0)的距離等于點P(x,y)到直線x=-1的距離,
由拋物線的定義知點P的軌跡方程是以F(1,0)為焦點,以x=-1為準線的拋物線,
故曲線C的方程為y2=4x.
(Ⅱ)由D(x0,2)在曲線C上,得4=4x0⇒x0=1,從而D(1,2)
設M(x1,y1),N(x2,y2),
直線l1:y=k(x-1)+2,
則l2:y=-k(x-1)+2,
由$\left\{{\begin{array}{l}{y=k(x-1)+2}\\{{y^2}=4x}\end{array}}\right.⇒{k^2}{x^2}-(2{k^2}-4k+4)x+{(k-2)^2}=0$,
∴${x_1}×1=\frac{{{{(k-2)}^2}}}{k^2}=\frac{{{k^2}-4k+4}}{k^2}$
同理${x_2}=\frac{{{k^2}+4k+4}}{k^2}$,
∴${x_1}+{x_2}=\frac{{2{k^2}+8}}{k^2},{x_1}-{x_2}=\frac{-8}{k}$,
∴${y_1}-{y_2}=k({x_1}+{x_2})-2k=\frac{8}{k}$
∴${k_{MN}}=\frac{{{y_1}-{y_2}}}{{{x_1}-{x_2}}}=\frac{{\frac{8}{k}}}{{-\frac{8}{k}}}=-1$
直線MN的斜率為定值-1.

點評 本題考查了拋物線的定義和直線與拋物線的位置關系的運用能力和計算能力.屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

10.已知直線l1:ax+(a+2)y+2=0和l2:x+ay+1=0,若l1∥l2則a=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知(ax+b)6的展開式中x4項的系數(shù)與x5項的系數(shù)分別為135與-18,則(ax+b)6展開式所有項系數(shù)之和為( 。
A.-1B.1C.32D.64

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.從正五邊形的5個頂點中隨機選擇3個頂點,則以它們作為頂點的三角形是銳角三角形的概率是( 。
A.$\frac{1}{3}$B.$\frac{2}{5}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.一個幾何體的三視圖如圖所示,圖中矩形均為邊長是1的正方形弧線為四分之一圓,則該幾何體的體積是$1-\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.下列說法正確的是( 。
A.“sinα=$\frac{3}{5}$”是“cos2α=$\frac{7}{25}$”的必要不充分條件
B.已知命題p:?x∈R,使2x>3x;命題q:?x∈(0,+∞),都有$\frac{1}{{x}^{2}}$<$\frac{1}{{x}^{3}}$,則p∧(¬q)是真命題
C.命題“若xy=0,則x=0或y=0”的否命題是“若xy≠0,則x≠0或y≠0”
D.從勻速傳遞的生產(chǎn)流水線上,質檢員每隔5分鐘從中抽取一件產(chǎn)品進行某項指標檢測,這是分成抽樣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.數(shù)列{an}的前n項和是Sn,且Sn+$\frac{1}{2}$an=1,數(shù)列{bn},{cn}滿足bn=log3$\frac{{{a}_{n}}^{2}}{4}$,cn=$\frac{1}{_{n}_{n+2}}$.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)數(shù)列{cn}的前n項和為Tn,若不等式Tn<m對任意的正整數(shù)n恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在三棱柱ABC-A1B1C1中,△ABC是邊長為2的正三角形,側面BB1C1C為矩形,D,E,F(xiàn)分別是線段BB1,AC1,A1C1的中點.
(1)求證:DE∥平面A1B1C1;
(2)若平面ABC⊥平面BB1C1C,BB1=4,求三棱錐C-AC1D的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知i是虛數(shù)單位,復數(shù)z=$\frac{1-2i}{i}$,則復數(shù)z在復平面內對應的點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習冊答案