分析 利用三角形面積公式列出關系式,將sinA及已知面積代入求出bc的值,利用余弦定理即可求出b+c的值,即可確定出三角形ABC周長.
解答 解:∵S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}$bc×$\frac{\sqrt{3}}{2}$=$\frac{{15\sqrt{3}}}{4}$,
∴解得bc=15,
又∵a=8,A=60°,
∴由余弦定理得a2=b2+c2-2bccosA=b2+c2-bc=(b+c)2-3bc=(b+c)2-45=64,即解得:b+c=$\sqrt{109}$,
∴△ABC的周長為:a+b+c=8+$\sqrt{109}$.
故答案為:8+$\sqrt{109}$.
點評 此題考查了正弦、余弦定理,三角形面積公式,熟練掌握定理及公式是解本題的關鍵,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=x2-1 | B. | f(x)=x2-x | C. | f(x)=x2+x | D. | f(x)=x2+1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[0,\frac{π}{3}]$ | B. | $[\frac{π}{3},\frac{π}{2}]$ | C. | $[0,\frac{π}{3}]∪(\frac{π}{2},π)$ | D. | $[\frac{π}{3},π)$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=2sin3x | B. | $f(x)=2sin(x+\frac{π}{3})$ | C. | $f(x)=2sin(3x+\frac{π}{6})$ | D. | $f(x)=2sin(2x+\frac{π}{6})$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,2] | B. | ($\frac{13}{4}$,2] | C. | (1,3] | D. | ($\frac{13}{4}$,3] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,0) | B. | (-∞,1] | C. | (-∞,0)∪(0,1] | D. | (0,1] |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com