已知△ABC的三個(gè)頂點(diǎn)在半徑為1的球面上,且AB=1,BC=
3
.若A、C兩點(diǎn)的球面距離為
π
2
,則球心O到平面ABC的距離為( 。
A、
1
4
B、
2
2
C、
1
2
D、
3
2
分析:先求得AC的長(zhǎng),由AB=1,BC=
3
,AC=
2
,我們易判斷出△ABC為以A為直角的直角三角形,根據(jù)直角三角形外接圓半徑等于斜邊的一半,我們可以求出截面的半徑,再根據(jù)球心距、截面圓半徑、球半徑構(gòu)成直角三角形,滿(mǎn)足勾股定理,我們易得球心O到平面ABC的距離.
解答:解:∵A、C兩點(diǎn)的球面距離為
π
2
,
∴AC=
2

∵AB=1,BC=
3
,AC=
2

∴△ABC為以A為直角的直角三角形
∴平面ABC截球得到的截面圓半徑r=
1
2
BC=
3
2

∴球心O到平面ABC的距離d=
R2-r2
=
1
2

故選C.
點(diǎn)評(píng):若球的截面圓半徑為r,球心距為d,球半徑為R,則球心距、截面圓半徑、球半徑構(gòu)成直角三角形,滿(mǎn)足勾股定理,即R2=r2+d2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三個(gè)頂點(diǎn)在同一球面上,若∠BAC=90°,AB=AC=2,球心O到平面ABC的距離為1,則該球的半徑為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三個(gè)頂點(diǎn)在同一球面上,若∠BAC=90°,AB=AC=2,球心O到平面ABC的距離為1,則該球的球面面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•樂(lè)山二模)已知△ABC的三個(gè)頂點(diǎn)在同一個(gè)球面上,∠BAC=60°,AB=1,AC=2,若球心到平面ABC的距離為1,則該球的體積為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•楊浦區(qū)一模)已知△ABC的三個(gè)頂點(diǎn)在拋物線(xiàn)Γ:x2=y上運(yùn)動(dòng).
(1)求Γ的焦點(diǎn)坐標(biāo);
(2)若點(diǎn)A在坐標(biāo)原點(diǎn),且∠BAC=
π
2
,點(diǎn)M在BC上,且
AM
BC
= 0
,求點(diǎn)M的軌跡方程;
(3)試研究:是否存在一條邊所在直線(xiàn)的斜率為
2
的正三角形ABC,若存在,求出這個(gè)正三角形ABC的邊長(zhǎng),若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案