精英家教網 > 高中數學 > 題目詳情

已知函數 ().
(1)若,求函數的極值;
(2)設
① 當時,對任意,都有成立,求的最大值;
② 設的導函數.若存在,使成立,求的取值范圍.

(1)參考解析; (2)①-1-e-1,②(-1,+∞)

解析試題分析:(1)由函數 (),且,所以對函數求導,根據導函數的正負性可得到結論
(2)①當時,對任意,都有成立,即時,恒成立. 由此可以通過分離變量或直接求函數的最值求得結果,有分離變量可得b≤x2-2x-在x∈(0,+∞)上恒成立.通過求函數h(x)=x2-2x- (x>0)的最小值即可得到結論.
②若存在,使.通過表示即可得到,所以求出函數u(x)= (x>1)的單調性即可得到結論.
(1)當a=2,b=1時,f (x)=(2+)ex,定義域為(-∞,0)∪(0,+∞).
所以f ′(x)=ex.       2分
令f ′(x)=0,得x1=-1,x2,列表

x
(-∞,-1)
-1
(-1,0)
(0,)

(,+∞)
f ′(x)






f (x)

極大值


極小值

 
由表知f (x)的極大值是f (-1)=e-1,f (x)的極小值是f ()=4.   4分
(2)① 因為g (x)=(ax-a)ex-f (x)=(ax--2a)ex,
當a=1時,g (x)=(x-
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(13分)已知函數的圖象在點處的切線垂直于軸.
(1)求實數的值;
(2)求的極值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求函數在點處的切線方程;
(2)求函數的單調區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數.
(1)求的單調區(qū)間和極值;
(2)若,當時,在區(qū)間內存在極值,求整數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,.
(1)討論內和在內的零點情況.
(2)設內的一個零點,求上的最值.
(3)證明對恒有.[來

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)求函數的最小值;
(2)若,證明:當時,.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)證明:;
(2)證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

水庫的蓄水量隨時間而變化,現用表示時間,以月為單位,年初為起點,根據歷年數據,某水庫的蓄水量(單位:億立方米)關于的近似函數關系式為

(1)該水庫的蓄求量小于50的時期稱為枯水期.以表示第1月份(),同一年內哪幾個月份是枯水期?
(2)求一年內該水庫的最大蓄水量(取計算).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)求f(x)的反函數的圖象上圖象上,點(1,0)處的切線方程;
(2)證明: 曲線y =" f" (x)與曲線有唯一公共點.
(3)設a<b, 比較的大小, 并說明理由.   

查看答案和解析>>

同步練習冊答案