8.復(fù)數(shù)z1,z2滿足|z1|=|z2|=1,|z1+z2|=$\sqrt{2}$,則|z1-z2|=(  )
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

分析 設(shè)復(fù)數(shù)z1,z2所對應(yīng)的向量分別為$\overrightarrow{a}$,$\overrightarrow$.根據(jù)復(fù)數(shù)z1,z2滿足|z1|=|z2|=1,|z1+z2|=$\sqrt{2}$,利用復(fù)數(shù)的幾何意義可得$\overrightarrow{a}⊥\overrightarrow$.

解答 解:設(shè)復(fù)數(shù)z1,z2所對應(yīng)的向量分別為$\overrightarrow{a}$,$\overrightarrow$.
∵復(fù)數(shù)z1,z2滿足|z1|=|z2|=1,|z1+z2|=$\sqrt{2}$,
∴$|\overrightarrow{a}|$=$|\overrightarrow|$=1,$|\overrightarrow{a}+\overrightarrow|$=$\sqrt{2}$,
∴$\overrightarrow{a}•\overrightarrow$=0,
∴$\overrightarrow{a}⊥\overrightarrow$.
則|z1-z2|=|z1+z2|=$\sqrt{2}$,
故選:B.

點評 本題考查了復(fù)數(shù)的幾何意義、復(fù)數(shù)及其向量的運算性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.隨機擲兩枚質(zhì)地均勻的骰子,它們向上的點數(shù)之和不超過5的概率為$\frac{5}{18}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知兩圓的方程分別為x2+y2-4x=0和x2+y2-4y=0,則這兩圓公共弦的長等于2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知數(shù)列{an}是等比數(shù)列,Sn為其前n項和,且a1=2,${a_{n+1}}=3{S_n}+2({n∈{N^*}})$,則a5=512.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在幾何體EFABCD中,矩形ABCD所在的平面和梯形ABEF所在的平面互相垂直,且AB∥EF,AB=2EF,設(shè)平面CBF將幾何體EFABCD分成的兩個錐體的體積分別為VF-ABCD,VF-CBE,求VF-ABCD:VF-CBE的值為( 。
A.2:1B.3:1C.4:1D.5:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.函數(shù)f(x)=$\frac{xln(x-1)}{x-2}$,x∈[1.5,3]的值域為(0,3ln2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖所示,在四棱錐P-ABCD中,AB∥CD,AB⊥AD,AB=AD=AP=2CD=2,M是棱PB上一點.
(Ⅰ)若BM=2MP,求證:PD∥平面MAC;
(Ⅱ)若平面PAB⊥平面ABCD,平面PAD⊥平面ABCD,求證:PA⊥平面ABCD;
(Ⅲ)在(Ⅱ)的條件下,若二面角B-AC-M的余弦值為$\frac{2}{3}$,求$\frac{PM}{PB}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.三個學(xué)生獨立的求解同一個數(shù)學(xué)題,已知三個學(xué)生各自解出該數(shù)學(xué)題的概率都是$\frac{2}{3}$,且他們能否接觸該題互不影響,
(Ⅰ)求恰有二人解出該題的概率;
(Ⅱ)求能解出該數(shù)學(xué)題的人數(shù)X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,莖葉圖記錄了某城市甲、乙兩個觀測點連續(xù)三天觀測到的空氣質(zhì)量指數(shù)(AQI).乙觀測點記錄中有一個數(shù)字模糊無法確認,已知該數(shù)是0,1,…,9中隨機的一個數(shù),并在圖中以a表示.
(Ⅰ)若甲、乙兩個觀測點記錄數(shù)據(jù)的平均值相同,求a的值;
(Ⅱ)當(dāng)a=2時,分別從甲、乙兩觀測點記錄的數(shù)據(jù)中各隨機抽取一天的觀測值,記這兩觀測值之差的絕對值為X,求|X|≤2的概率.

查看答案和解析>>

同步練習(xí)冊答案