分析 把函數(shù)y=$\sqrt{(2-a){x}^{2}-2(a-2)x+4}$的定義域?yàn)镽轉(zhuǎn)化為(2-a)x2-2(a-2)x+4≥0對(duì)任意x∈R恒成立.然后分a=2和a≠2分類求解得答案.
解答 解:∵y=$\sqrt{(2-a){x}^{2}-2(a-2)x+4}$的定義域?yàn)镽,
∴(2-a)x2-2(a-2)x+4≥0對(duì)任意x∈R恒成立.
當(dāng)a=2時(shí),不等式化為4≥0恒成立;
當(dāng)a≠2時(shí),需$\left\{\begin{array}{l}{2-a>0}\\{△=4(a-2)^{2}-16(2-a)≤0}\end{array}\right.$,解得-2≤a<2.
綜上,-2≤a≤2.
∴實(shí)數(shù)a的取值范圍為[-2,2].
故答案為:[-2,2].
點(diǎn)評(píng) 本題考查函數(shù)定義域及其求法,考查數(shù)學(xué)轉(zhuǎn)化思想方法,體現(xiàn)了分類討論的數(shù)學(xué)思想方法,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | 4 | C. | -4 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{{e}_{1}}$=(1,0) | B. | |$\overrightarrow{OA}$|=2$\sqrt{3}$ | C. | $\overrightarrow{OA}$∥$\overrightarrow{BC}$ | D. | $\overrightarrow{OA}$⊥$\overrightarrow{OB}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com