9.如圖是某學(xué)校隨機(jī)調(diào)查200 名走讀生上學(xué)路上所需時(shí)間t(單位:分鐘)的樣本頻率分布直方圖.
(1)求x的值;
(2)用樣本估計(jì)總體的思想,估計(jì)學(xué)校所有走讀生上學(xué)路上所需要的平均時(shí)間是多少分鐘?
(3)若用分層抽樣的方法從這200名走讀生中,抽出25 人做調(diào)查,求應(yīng)在上學(xué)路上所需時(shí)間分別為[6,10],[18,22]這兩組中各抽取多少人?

分析 (1)(2)根據(jù)頻率分布直方圖求出x的值即可;
(3)先求出上學(xué)所需時(shí)間在6~10分鐘的人數(shù)和上學(xué)所需時(shí)間在18~22分鐘的人數(shù),再計(jì)算出其比值,從而求出相對(duì)應(yīng)的人數(shù)即可.

解答 解:(1)由已知得:
0.02×4+4x+0.03×4×2+0.09×4=1,
解得:x=0.08;
(2)由樣本的頻率分布直方圖得:
學(xué)校所有走讀生上學(xué)路上所需要的平均時(shí)間是:
$\overline{t}$=4×0.02×4+8×0.08×4+12×0.09×4+16×0.03×4+20×0.03×4=11.52;
(3)由圖象得:抽出的200名走讀生中,
上學(xué)所需時(shí)間在6~10分鐘的人數(shù)有:200×4×0.08=64,
上學(xué)所需時(shí)間在18~22分鐘的人數(shù)有:200×4×0.03=24,
用分層抽樣的抽樣比是$\frac{25}{200}$=$\frac{1}{8}$,
∴上學(xué)所需時(shí)間在6~10分鐘的人應(yīng)選:64×$\frac{1}{8}$=8,
上學(xué)所需時(shí)間在18~22分鐘的人應(yīng)選:24×$\frac{1}{8}$=3.

點(diǎn)評(píng) 本題考查了頻率分布直方圖以及相關(guān)運(yùn)算,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)=ex-e-x+ln($\sqrt{1+{x}^{2}}$+x),a=f($\frac{ln2}{2}$),b=f(2${\;}^{\frac{1}{2}}$),c=-f(2-π),下列結(jié)論正確的是( 。
A.a>b>cB.c>a>bC.b>a>cD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若函數(shù)f(x)=x2-2x+m(x∈R)有兩個(gè)不同零點(diǎn),并且不等式f(1-x)≥-1恒成立,則實(shí)數(shù)m的取值范圍是(  )
A.(0,1)B.[0,1)C.(0,1]D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.某地區(qū)恩格爾系數(shù)(表示生活水平高低的一個(gè)指標(biāo))y(%)與年份x的統(tǒng)計(jì)數(shù)據(jù)如表:
年份x2004200520062007
恩格爾系數(shù)y(%)4745.543.541
從散點(diǎn)圖可以看出y與x線性相關(guān),且可得回歸直線方程為$\widehat{y}$=$\widehat$x+4055.25,據(jù)此模型可預(yù)測(cè)2016年該地區(qū)的恩格爾系數(shù)為23.25%.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.變量x,y具有線性相關(guān)關(guān)系,當(dāng)x取值為16,14,12,8時(shí),通過觀測(cè)得到y(tǒng)的值分別為11,9,8,5.若在實(shí)際問題中,預(yù)測(cè)當(dāng)y=10時(shí),x的近似值為(  )
(參考公式:$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{{x_i}^2}-n{{\overline x}^2}}}$,$\hat a$=$\overline{y}$-$\hat b$$\overline{x}$)
A.14B.15C.16D.17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某校高中生共有2700人,其中高一年級(jí)900人,高二年級(jí)1200人,高三年級(jí)600人,現(xiàn)采取分層抽樣法抽取容量為27的樣本,那么高一、高二、高三各年級(jí)抽取的人數(shù)分別為( 。
A.6,12,9B.9,9,9C.3,9,15D.9,12,6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若f(x)=cos(2x+φ)+b,對(duì)任意實(shí)數(shù)x都有f(x)=f($\frac{π}{3}$-x),f($\frac{2π}{3}$)=-1,則實(shí)數(shù)b的值為( 。
A.-2或0B.0或1C.±1D.±2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知離散型隨機(jī)變量X服從二項(xiàng)分布X~B(n,p)且E(X)=12,D(X)=4,則n與p的值分別為(  )
A.$18,\frac{2}{3}$B.$18,\frac{1}{3}$C.$12,\frac{2}{3}$D.$12,\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.平面A1B1C1∥平面ABC,A1A⊥平面ABC,A1A∥B1B∥C1C,AB=BC=AC=AA1=4,求BC1與平面ABB1A1所成角的大。ㄒ笥脦缀魏拖蛄?jī)煞N方法計(jì)算,并有規(guī)范的計(jì)算過程)
幾何方法:arcsin$\frac{\sqrt{6}}{4}$
向量方法:arcsin$\frac{\sqrt{6}}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案