【題目】已知函數(shù)f(x)=2sinωxcosωx+2 sin2ωx﹣ (ω>0)的最小正周期為π.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)將函數(shù)f(x)的圖象向左平移 個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在 上的最值.

【答案】
(1)解:由題意得:

f(x)=2sinωxcosωx+2 sin2ωx﹣

=sin2ωx﹣ cos2ωx

=2sin(2ωx﹣

由周期為π,得ω=1,得f(x)=2sin(2x﹣

由正弦函數(shù)的單調(diào)遞增區(qū)間得

2kπ﹣ ≤2x﹣ ≤2kπ+ ,得kπ﹣ ≤x≤kπ+ ,k∈Z,

所以函數(shù)f(x)的單調(diào)遞增區(qū)間是[kπ﹣ ,kπ+ ],k∈Z


(2)解:將函數(shù)f(x)的圖象向左平移 個(gè)單位,再向上平移1個(gè)單位,

得到y(tǒng)=2sin2x+1的圖象,所以g(x)=2sin2x+1

因?yàn)? ,所以 ,故2sinx∈[﹣1,2],

所以函數(shù)g(x)的最大值為3,最小值為0.


【解析】(1)根據(jù)二倍角的三角函數(shù)公式與輔助角公式化簡(jiǎn)得f(x)=2sin(2ωx﹣ ),利用周期公式算出ω=1,得函數(shù)解析式為f(x)=2sin(2x﹣ ).再由正弦函數(shù)單調(diào)區(qū)間的公式,解關(guān)于x的不等式即可得到函數(shù)f(x)的單調(diào)增區(qū)間;(2)求出g(x)的解析式,根據(jù)函數(shù)的單調(diào)性求出函數(shù)在閉區(qū)間的最值即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識(shí),掌握?qǐng)D象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩個(gè)小組各10名學(xué)生的英語(yǔ)口語(yǔ)測(cè)試成績(jī)?nèi)缦?/span>(單位:分).

甲組:76,90,84,86,81,87,86,82,85,83 乙組:82,84,85,89,79,80,91,89,79,74

現(xiàn)從這20名學(xué)生中隨機(jī)抽取一人,將抽出的學(xué)生為甲組學(xué)生記為事件A;“抽出學(xué)生的英語(yǔ)口語(yǔ)測(cè)試成績(jī)不低于85記為事件B,則P(AB)、P(A|B)的值分別是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中

(1)若的極值點(diǎn),求的值;

(2)求函數(shù)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司計(jì)劃在迎春節(jié)聯(lián)歡會(huì)中設(shè)一項(xiàng)抽獎(jiǎng)活動(dòng):在一個(gè)不透明的口袋中裝入外形一樣號(hào)

碼分別為1,2,3,…,10的十個(gè)小球。活動(dòng)者一次從中摸出三個(gè)小球,三球號(hào)碼有且僅有兩個(gè)連號(hào)的為三等獎(jiǎng),獎(jiǎng)金30元;三球號(hào)碼都連號(hào)為二等獎(jiǎng),獎(jiǎng)金60元;三球號(hào)碼分別為1,5,10為一等獎(jiǎng),獎(jiǎng)金240元;其余情況無(wú)獎(jiǎng)金。

(1)求員工甲抽獎(jiǎng)一次所得獎(jiǎng)金ξ的分布列與期望;

(2)員工乙幸運(yùn)地先后獲得四次抽獎(jiǎng)機(jī)會(huì),他得獎(jiǎng)次數(shù)的方差是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線(xiàn)將圓分成4部分,用5種不同顏色給四部分染色,每部分染一種顏色,相鄰部分不能染同一種顏色,則不同的染色方案有

A 120 B 240 C 260 D 280

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,從該地區(qū)調(diào)查了500位老人,結(jié)果如下:

性別

是否需要志愿者

需要

40

30

不需要

160

270

(1)估計(jì)該地區(qū)老年人中,需要志愿提供幫助的老年人的比例;

(2)能否有99℅的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?提供幫助的老年人的比例?說(shuō)明理由.

0.050

0.010

0.001

3.841

6.635

10.828

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】北京時(shí)間3月15日下午,谷歌圍棋人工智能與韓國(guó)棋手李世石進(jìn)行最后一輪較量,獲得本場(chǎng)比賽勝利,最終人機(jī)大戰(zhàn)總比分定格1:4.人機(jī)大戰(zhàn)也引發(fā)全民對(duì)圍棋的關(guān)注,某學(xué)校社團(tuán)為調(diào)查學(xué)生學(xué)習(xí)圍棋的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查.根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均學(xué)習(xí)圍棋時(shí)間的頻率分布直方圖(如圖所示),將日均學(xué)習(xí)圍棋時(shí)間不低于40分鐘的學(xué)生稱(chēng)為“圍棋迷”.

(Ⅰ)根據(jù)已知條件完成列聯(lián)表,并據(jù)此資料你是否有的把握認(rèn)為“圍棋迷”與性別有關(guān)?

非圍棋迷

圍棋迷

合計(jì)

10

55

合計(jì)

(Ⅱ)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從該地區(qū)大量學(xué)生中,采用隨機(jī)抽樣方法每次抽取1名學(xué)生,抽取3次,記被抽取的3名淡定生中的“圍棋迷”人數(shù)為X。若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列,期望 E(X) 和方差 D(X) .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為三角形的三邊,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“干支紀(jì)年法”是中國(guó)歷法上自古以來(lái)使用的紀(jì)年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱(chēng)為“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”!疤旄伞币浴凹住弊珠_(kāi)始,“地支”以“子”字開(kāi)始,兩者按干支順序相配,組成了干支紀(jì)年法,其相配順序?yàn)椋杭鬃印⒁页、丙寅…癸酉,甲戌、乙亥、丙子…癸末,甲申、乙酉、丙戌…癸巳,…,共得?/span>個(gè)組成,周而復(fù)始,循環(huán)記錄。2014年是“干支紀(jì)年法”中的甲午年,那么2020年是“干支紀(jì)年法”中的()

A. 己亥年 B. 戊戌年 C. 庚子年 D. 辛丑年

查看答案和解析>>

同步練習(xí)冊(cè)答案