內(nèi)接于半徑為R的球且體積最大的圓柱的高為
 
考點:球內(nèi)接多面體
專題:計算題,空間位置關(guān)系與距離
分析:設(shè)球內(nèi)接圓柱的高為h,圓柱底面半徑為r,得圓柱體積V關(guān)于h的函數(shù)表達式:V(h)=πR2h-
1
4
πh3(0<h<2R).利用求導(dǎo)數(shù)的方法,討論函數(shù)V(h)的單調(diào)性,可得當(dāng)h=
2
3
R
3
時,V(h)取得最大值,得到本題的答案.
解答: 解:設(shè)球內(nèi)接圓柱的高為h,圓柱底面半徑為r
則h2+(2r)2=(2R)2,得r2=R2-
1
4
h2.(0<h<2R)
∴圓柱的體積為V(h)=πr2h=πh(R2-
1
4
h2)=πR2h-
1
4
πh3.(0<h<2R)
求導(dǎo)數(shù),得V'(h)=πR2-
3
4
πh2=π(R+
3
h
2
)(R-
3
h
2

∴0<h<
2
3
R
3
時,V'(h)>0;
2
3
R
3
<h<2R時,V'(h)<0
由此可得:V(h)在區(qū)間(0,
2
3
R
3
)上是增函數(shù);在區(qū)間(
2
3
R
3
,2R)上是減函數(shù)
∴當(dāng)h=
2
3
R
3
時,V(h)取得最大值.
故答案為:
2
3
R
3
點評:本題主要考查了球和圓柱的有關(guān)知識以及函數(shù)建模以及用導(dǎo)數(shù)這一工具求最值的方法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2是橢圓
x2
25
+
y2
16
=1的兩個焦點,點M在橢圓上,若△MF1F2是直角三角形,則△MF1F2的面積等于( 。
A、
48
5
B、
36
5
C、16
D、
48
5
或16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:函數(shù)f(x)=loga|x|在區(qū)間(0,+∞)上單調(diào)遞增,命題q:關(guān)于x的方程x2+2x+loga
3
2
=0的解集只有一個子集,若“p或q”為真,“﹁P或﹁q”也為真,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在公差不為零的等差數(shù)列{an}中,a2=3,a1,a3,a7成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{an}的前n項和為Sn,記bn=
1
S3n
.求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)可導(dǎo),且x0∈(a,b),則
lim
h→∞
f(x0+h)-f(x0-h)
h
=( 。
A、f′(x0
B、2f′(x0
C、-2f′(x0
D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)f(x)=(m2-m-1)xm2-2m-3,且當(dāng)x>0時,y是減函數(shù),則m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖為y=Asin(ωx+φ)(A>0,ω>0,|ϕ|≤
π
2
)的部分圖象,則該函數(shù)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y=
1
4
x2的焦點F作斜率為k的弦AB,
(1)若k=0,求 
1
AF
+
1
BF
的值;
(2)當(dāng)k變化時,求證 
1
AF
+
1
BF
為一定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線y=
1
3
x3
上一點P(2,
8
3
)
,求:
(1)點P處切線的斜率;
(2)點P處的切線方程.

查看答案和解析>>

同步練習(xí)冊答案