已知函數(shù).
(1)若,則,滿足什么條件時(shí),曲線處總有相同的切線?
(2)當(dāng)時(shí),求函數(shù)的單調(diào)減區(qū)間;
(3)當(dāng)時(shí),若對(duì)任意的恒成立,求的取值的集合.

(1),(2)當(dāng)時(shí),函數(shù)的減區(qū)間為;
當(dāng)時(shí),函數(shù)的減區(qū)間為;當(dāng)時(shí),函數(shù)的減區(qū)間為,,(3).

解析試題分析:(1)根據(jù)導(dǎo)數(shù)幾何意義分別求出曲線處的切線斜率,再根據(jù)兩者相等得到,滿足的條件,易錯(cuò)點(diǎn)不要忽視列出題中已知條件,(2)求函數(shù)的單調(diào)減區(qū)間,一是求出函數(shù)的導(dǎo)數(shù),二是判斷對(duì)應(yīng)區(qū)間的導(dǎo)數(shù)值符號(hào).本題難點(diǎn)在于導(dǎo)數(shù)為零時(shí)根的大小不確定,需根據(jù)根的大小關(guān)系分別討論單調(diào)減區(qū)間情況,尤其不能忽視兩根相等的情況,(3)本題恒成立轉(zhuǎn)化為函數(shù)最小值不小于零,難點(diǎn)是求函數(shù)的最小值時(shí)須分類討論,且每類否定的方法為舉例說(shuō)明.另外,本題易想到用變量分離法,但會(huì)面臨問(wèn)題,而這需要高等數(shù)學(xué)知識(shí).
試題解析:(1),,又,
處的切線方程為,          2分
,,又,處的切線方程為,
所以當(dāng)時(shí),曲線處總有相同的切線     4分
(2)由,,,
,         7分
,得,
當(dāng)時(shí),函數(shù)的減區(qū)間為,
當(dāng)時(shí),函數(shù)的減區(qū)間為
當(dāng)時(shí),函數(shù)的減區(qū)間為,.      10分
(3)由,則,
①當(dāng)時(shí),,函數(shù)單調(diào)遞增,
, 時(shí),,與函數(shù)矛盾,   12分
②當(dāng)時(shí),,,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=ax3x2cxd(ac,d∈R)滿足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.
(1)求a,c,d的值;
(2)若h(x)=x2bx,解不等式f′(x)+h(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè),函數(shù)
(1)當(dāng)時(shí),求內(nèi)的極大值;
(2)設(shè)函數(shù),當(dāng)有兩個(gè)極值點(diǎn)時(shí),總有,求實(shí)數(shù)的值.(其中的導(dǎo)函數(shù).)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù).
(Ⅰ)求函數(shù)單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)時(shí),求函數(shù)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)有兩個(gè)極值點(diǎn),且,求證:;
(Ⅲ)設(shè),對(duì)于任意時(shí),總存在,使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)證明函數(shù)在區(qū)間上單調(diào)遞減;
(2)若不等式對(duì)任意的都成立,(其中是自然對(duì)數(shù)的底數(shù)),求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)上的單調(diào)區(qū)間;
(2)設(shè)函數(shù),是否存在區(qū)間,使得當(dāng)時(shí)函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/80/2/gxbpg2.png" style="vertical-align:middle;" />,若存在求出,若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

。
(Ⅰ)求的極值點(diǎn);
(Ⅱ)當(dāng)時(shí),若方程上有兩個(gè)實(shí)數(shù)解,求實(shí)數(shù)t的取值范圍;
(Ⅲ)證明:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(1)當(dāng)時(shí),求曲線處的切線方程;
(2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(3)在(2)的條件下,設(shè)函數(shù),若對(duì)于 [1,2], [0,1],使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案