分析 (1)利用誘導(dǎo)公式化簡可得f(x);
(2)根據(jù)f(α)=-$\frac{5}{13}$,求解出cosα,tanα的值即可.
解答 解:(1)由f(x)=$\frac{cos(x-\frac{π}{2})}{sin(\frac{7π}{2}+x)}$•cos(π-x)=-$\frac{sinx}{cosx}•-cosx=sinx$
(2)f(α)=-$\frac{5}{13}$,即sinα=$\frac{5}{13}$,
那么:cosα=$±\sqrt{1-si{n}^{2}α}$=$±\frac{12}{13}$,
tanα=$\frac{sinα}{cosα}=±\frac{5}{12}$.
點(diǎn)評 本題主要考察了同角三角函數(shù)關(guān)系式和誘導(dǎo)公式的應(yīng)用,屬于基本知識的考查.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在回歸分析中,變量間的關(guān)系若是非確定性關(guān)系,則因變量不能由自變量唯一確定 | |
B. | 線性相關(guān)系數(shù)可以是正的或負(fù)的 | |
C. | 回歸分析中,如果r2=1,說明x與y之間完全線性相關(guān) | |
D. | 樣本相關(guān)系數(shù)r∈(-∞,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x+8y+22=0或7x-4y-26=0 | B. | x+8y+22=0 | ||
C. | x-8y+22=0或7x+4y-26=0 | D. | 7x-4y-26=0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com