5.若q>0,命題甲:“a,b為實(shí)數(shù),且|a-b|<2q”;命題乙:“a,b為實(shí)數(shù),滿足|a-2|<q,且|b-2|<q”,則甲是乙的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

分析 根據(jù)充分必要條件的定義以及不等式的性質(zhì)判斷即可.

解答 解:若a,b為實(shí)數(shù),且|a-b|<2q,
則-2q<a-b<2q,
故命題甲:-2q<a-b<2q;
若a,b為實(shí)數(shù),滿足|a-2|<q,且|b-2|<q,
則2-q<a<2+q①,2-q<b<2+q②,
由②得:-2-q<-b<-2+q③,
①+③得:-2q<a-b<2q,
故命題乙:-2q<a-b<2q,
故甲是乙的充分必要條件,
故選:C.

點(diǎn)評(píng) 本題考查了充分必要條件,考查不等式的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.sin(-1740°)的值是( 。
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線畫出的是某幾何體的三視圖,則該幾何體的體積為(  )
A.$\frac{14π}{3}$B.$\frac{10π}{3}$C.$\frac{8π}{3}$D.$\frac{5π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知集合A={x|2x-1<0},B={x|0≤x≤1},那么A∩B等于( 。
A.{x|x≥0}B.{x|x≤1}C.{x|0<x<$\frac{1}{2}$}D.{x|0≤x<$\frac{1}{2}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若函數(shù)y=sin(ωx+φ)(ω>0)的部分圖象如圖所示,則ω=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知z滿足$({1-i})z=\sqrt{3}+i$(i為虛數(shù)單位),則|z|=(  )
A.$\sqrt{2}$B.$\frac{{\sqrt{2}}}{2}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)m>1,當(dāng)實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}y≥x\\ y≤2x\\ x+y≤1\end{array}\right.$,目標(biāo)函數(shù)z=x+my的最大值等于3,則m的值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=sinx+lnx-kx(k>0)
(1)若函數(shù)f(x)在$(0,\frac{π}{2}]$單調(diào)遞增,求k的取值范圍
(2)設(shè)g(x)=sinx(x>0),若y=g(x)的圖象在y=f(x)的圖象上方,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)全集U=R,集合A={x|x-1≤1},集合B={y|y=2x,x<1},則A∩(∁UB)=( 。
A.{x|0<x<2}B.C.{0,2}D.{x|x≤0或x=2}

查看答案和解析>>

同步練習(xí)冊(cè)答案