16.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實(shí)線畫出的是某幾何體的三視圖,則該幾何體的體積為(  )
A.$\frac{14π}{3}$B.$\frac{10π}{3}$C.$\frac{8π}{3}$D.$\frac{5π}{3}$

分析 由題意,該幾何體是由一個半圓柱與一個半球組成的組合體,其中半圓柱的底面半徑為1,高為4,半球的半徑為1,即可求出幾何體的體積.

解答 解:由題意,該幾何體是由一個半圓柱與一個半球組成的組合體,
其中半圓柱的底面半徑為1,高為4,半球的半徑為1,
幾何體的體積為$\frac{1}{2}×\frac{4}{3}π×{1}^{3}+\frac{1}{2}π×{1}^{2}×4$=$\frac{8}{3}$π,
故選C.

點(diǎn)評 本題考查三視圖,考查幾何體體積的計(jì)算,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=lnx+ax2
(1)記m(x)=f′(x),若m′(1)=3,求實(shí)數(shù)a的值;
(2)已知函數(shù)g(x)=f(x)-ax2+ax,若g(x)在(0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.一個幾何體的三視圖及其尺寸如圖所示,則該幾何體的體積為(  )
A.$\frac{28}{3}$B.$\frac{{28\sqrt{2}}}{3}$C.28D.$22+6\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,a1=2,a5=3a3,則a3=( 。
A.-2B.0C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.?dāng)?shù)列{an}滿足${a_1}>\frac{3}{2}$,${a_{n+1}}={a_n}^2-{a_n}+1$,且$\sum_{i=1}^{2017}{\frac{1}{a_i}}=2$,則4a2018-a1的最大值為-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知直線l:y=kx+m與橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$相交于A,P兩點(diǎn),與x軸,y軸分別相交于點(diǎn)N和點(diǎn)M,且PM=MN,點(diǎn)Q是點(diǎn)P關(guān)于x軸的對稱點(diǎn),QM的延長線交橢圓于點(diǎn)B,過點(diǎn)A,B分別做x軸的垂線,垂足分別為A1,B1
(1)若橢圓C的左、右焦點(diǎn)與其短軸的一個端點(diǎn)是正三角形的三個頂點(diǎn),點(diǎn)$D({1,\frac{3}{2}})$在橢圓C上,求橢圓C的方程;
(2)當(dāng)$k=\frac{1}{2}$時(shí),若點(diǎn)N平分線段A1B1,求橢圓C的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若函數(shù)f(x)=sinα-sinx,則f′(α)=(  )
A.-sinαB.-cosαC.cosα-sinαD.sinα-cosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若q>0,命題甲:“a,b為實(shí)數(shù),且|a-b|<2q”;命題乙:“a,b為實(shí)數(shù),滿足|a-2|<q,且|b-2|<q”,則甲是乙的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.?t∈R,不等式|2x-2|+4x<|t-3|+|t-4|恒成立.
(1)求實(shí)數(shù)x的取值范圍M.
(2)設(shè)a,b∈M,比較|1-4ab|與2|a-b|的大小,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案