下列命題中,真命題是( 。
A、?x0∈R,ex0≤0
B、?x∈R,2x>x2
C、雙曲線x2-y2=1的離心率為
2
2
D、雙曲線x2-
y2
4
=1
的漸近線方程為y=±2x
考點:命題的真假判斷與應用
專題:圓錐曲線的定義、性質(zhì)與方程,簡易邏輯
分析:A.由指數(shù)函數(shù)的性質(zhì)可得?x∈R,則ex>0,即可判斷出;
B.取x=2,則2x=x2,即可判斷出;
C.由等軸雙曲線的性質(zhì)即可判斷出;
D.由雙曲線x2-
y2
4
=1
可得:a=1,b=2,即可得出漸近線方程.
解答: 解:A.∵?x∈R,則ex>0,∴?x0∈R,ex0≤0不正確;
B.取x=2,則2x=x2,因此?x∈R,2x>x2不正確;
C.∵雙曲線x2-y2=1的離心率為
2
,∴C不正確;
D.雙曲線x2-
y2
4
=1
的漸近線方程為y=±2x,正確.
綜上可知:只有D正確.
故選:D.
點評:本題考查了指數(shù)函數(shù)的性質(zhì)、冪函數(shù)的性質(zhì)、雙曲線的標準與性質(zhì)等基礎(chǔ)知識與基本技能方法,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2+4x=0},函數(shù)B={x|x2+2(a+1)x+a2-1=0}.
(1)求使A∩B=B的實數(shù)a的取值范圍;
(2)使A∪B=B的實數(shù)a的取值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合A={x丨丨x丨2-3丨x丨+2=0},B={x丨(a-2)x=2},則滿足B?A的a值有
 
個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知
OA
=(-1,t),
OB
=(2,2),若∠ABO=90°,則t=( 。
A、2B、4C、5D、8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等比數(shù)列{an}的前n項和為Sn,若Sm-1=5,Sm=-11,Sm+1=21,則m=( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線y-1=k(x-3)被圓(x-2)2+(y-2)2=4所截得的最短弦長等于( 。
A、
3
B、2
3
C、2
2
D、
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直角坐標平面內(nèi)一動點P到點F(2,0)的距離與直線x=-2的距離相等.
(Ⅰ)求動點P的軌跡C的方程;
(Ⅱ)過點M(m,0)(m>0)作直線與曲線C相交于A,B兩點,問:是否存在一條垂直于x軸的直線與以線段AB為直徑的圓始終相切?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是邊長為a的正方形,PA=PD=AD且側(cè)面PAD⊥底面ABCD,若E、F分別為PC、BD的中點.
(Ⅰ)求證:EF∥平面PAD; 
(Ⅱ)在線段PB上是否存在點M,使得二面角A-MC-B為直二面角,若存在,求出BM的長,若不存在,請說明理由?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a、b、c分別為△ABC三個內(nèi)角A、B、C的對邊,若cosB=
4
5
,a=10,△ABC的面積為42,則b+
a
sinA
的值等于
 

查看答案和解析>>

同步練習冊答案