【題目】已知命題P:關(guān)于的不等式的解集為空集;命題q:函數(shù)沒有零點(diǎn),若命題P且q為假命題,P或q為真命題,求實(shí)數(shù)的取值范圍.

【答案】

【解析】

先求命題p,q分別為真時(shí)a的取值范圍,再分別求出當(dāng)pq假和當(dāng)qp假時(shí)a的取值范圍,求并集可得答案.

對(duì)于命題p:∵x2+(a﹣1)x+1≤0的解集為空集

∴△=b2﹣4ac=(a﹣1)2﹣4<0,解得﹣1<a<3

對(duì)于命題qfx)=ax2+ax+1沒有零點(diǎn)等價(jià)于方程ax2+ax+1=0沒有實(shí)數(shù)根

當(dāng)a=0時(shí),方程無實(shí)根符合題意

當(dāng)a≠0時(shí),△=a2﹣4a<0解得0<a<4

∴0≤a<4

由命題pq為假命題,pq為真命題可知,命題p與命題q有且只有一個(gè)為真

當(dāng)pq假時(shí)得解得﹣1<a<0

當(dāng)pq真時(shí)得解得3a<4

所以a的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】右圖是一個(gè)幾何體的平面展開圖,其中ABCD

正方形, EF分別為PA、PD的中點(diǎn),在此幾何體中,

給出下面四個(gè)結(jié)論:

直線BE與直線CF異面;直線BE與直線AF異面;

直線EF//平面PBC; 平面BCE平面PAD.

其中正確結(jié)論的個(gè)數(shù)是

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)的定義域?yàn)?/span>D={x|x≠0},且滿足對(duì)于任意x1,x2D,有f(x1·x2)=f(x1)+f(x2).

(1)求f(1)的值;

(2)判斷f(x)的奇偶性并證明你的結(jié)論;

(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函數(shù),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在同一直角坐標(biāo)系中,函數(shù)fx)=x≥0),gx)=的圖象可能是(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

當(dāng)時(shí),討論函數(shù)的單調(diào)性;

在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)是定義在上的偶函數(shù),且對(duì)任意的恒有,已知當(dāng)時(shí),則①函數(shù)的周期是;②上是增函數(shù),在上是減函數(shù);③的最大值是,最小值是;④當(dāng)時(shí), ,其中所有真命題的序號(hào)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,圓,點(diǎn),為拋物線上任意一點(diǎn)(異于原點(diǎn)),過點(diǎn)作圓的切線為切點(diǎn),則的最小值是___

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“雙十二”是繼“雙十一”之后的又一個(gè)網(wǎng)購(gòu)狂歡節(jié),為了刺激“雙十二”的消費(fèi),某電子商務(wù)公司決定對(duì)“雙十一”的網(wǎng)購(gòu)者發(fā)放電子優(yōu)惠券.為此,公司從“雙十一”的網(wǎng)購(gòu)消費(fèi)者中用隨機(jī)抽樣的方法抽取了100人,將其購(gòu)物金額(單位:萬元)按照 分組,得到如下頻率分布直方圖

根據(jù)調(diào)查,該電子商務(wù)公司制定了發(fā)放電子優(yōu)惠券的辦法如下:

(1)求購(gòu)物者獲得電子優(yōu)惠券金額的平均數(shù);

(2)從購(gòu)物者中隨機(jī)抽取10人,這10人中獲得電子優(yōu)惠券的人數(shù)為,的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為

1)求曲線C1C2的直角坐標(biāo)方程;

2)當(dāng)C1C2有兩個(gè)公共點(diǎn)時(shí),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案